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Abstract. This paper develops an affine term structure for the valuation of money
market funds. This valuation framework is then used to consider the economic impli-
cations of funds that are supported by a capital buffer. The main findings are twofold.
First, relatively small capital buffers are capable of absorbing daily fluctuations between
a fund’s shadow price and its amortized cost. For example, a fund with a capital buffer
of 60 basis points can absorb most day-to-day price risk. The ability to absorb large scale
defaults, however, would require a significantly larger and more costly buffer. Second,
because a buffer is designed to absorb credit risk, capital providers demand compensation
for bearing this risk. The analysis shows that, after compensating capital buffer investors
for absorbing credit risk, the returns available to money market fund shareholders are
comparable to default free securities, which would significantly reduce the utility of the
product to investors.
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1 Introduction

U.S. money market funds are open-end investment management companies
that are registered under the Investment Company Act of 1940. The prin-
cipal regulation underlying money market funds is rule 2a-7 under the In-
vestment Company Act, which was promulgated in 1983 and most recently
amended in 2010.

A mutual fund chooses whether or not to comply with rule 2a-7. A
fund that does so may represent itself as a money market fund, rather than,
for example, an ultra-short-term bond fund. All other funds are prohibited
from suggesting that they are money market funds. Under rule 2a-7, a
money market fund must satisfy constraints on portfolio holdings related to
liquidity, maturity, and portfolio composition, as well as satisfy a number of
operational requirements.

Compliant funds also are permitted to use amortized cost accounting
when valuing their portfolios rather than market-based valuations. Using
amortized cost valuation allows a money market fund to value its assets at
acquisition cost, adjusting for any premium or discount over the bond’s life.
A fund also must calculate its mark-to-market value on a per-share basis,
which is commonly referred to as the “shadow price.” The price per share
of a money market fund share can be rounded to $1.00 provided the shadow
price is within one half penny of $1.00.

The ability to price at a stable $1.00 is an important distinguishing fea-
ture of money market funds compared to other mutual funds. The essential
difference can be viewed from the perspective of an investor that invests
$1.00 in two identical funds. The first is a 2a-7 compliant money market
fund; the second is an ultra-short bond fund that holds exactly the same
portfolio of assets.1 Shareholders in a money market fund typically reinvest
dividends paid by the fund. Since share purchases and redemptions all occur
at the fund’s $1.00 stable share price (unless the fund breaks the buck), the
representative investor then tracks performance by monitoring the number
of shares they own, rather than changes in share price. By contrast, since
an ultra-short bond fund is valued at its market-based value (analogous to a
money market fund’s shadow price), this same investor tracks performance
by monitoring changes in the market-based price, holding the number of
shares constant.

The opportunity for investors to sell assets at amortized cost provides

1Since the two portfolios are identical, the realized returns to investors also should be
the same over a sufficiently long holding period. I discuss this distinction in greater detail
in Section 5.
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them with an embedded put option to sell assets for $1. That is, since re-
deeming shareholders settle at amortized cost, any capital losses or liquidity
discounts are borne by the remaining investors rather than those redeeming
their shares. This wealth transfer to liquidating from remaining sharehold-
ers creates an incentive to be the first to redeem shares when asset values
drop.

Financial turmoil in 2007 and 2008 put money market funds under con-
siderable pressure, which culminated the week of September 15, 2008 when
Lehman Brothers Holdings Inc. (Lehman Brothers) declared bankruptcy.
This event when coupled with concerns about American International Group,
Inc (AIG) and other financial sector securities led to heavy redemptions from
about a dozen money market funds that held, or were expected to be hold-
ing, these debt securities. The largest of these was the Reserve Fund, whose
Primary Fund series held a $785 million position in commercial paper issued
by Lehman Brothers. The capital loss associated with the failure of Lehman
Brothers caused the Primary Fund to “break the buck.” A fund is deemed
to break the buck when the shadow price deviates from amortized cost by
more than 0.50%.

During the week of September 15, 2008, investors withdrew approxi-
mately $300 billion from prime (taxable) money market funds, or 14 percent
of all assets held in those funds. The heaviest redemptions generally came
from institutional funds, which placed widespread pressure on fund share
prices as credit markets became illiquid. A Study by the U.S. Securities and
Exchange Commission’s Division of Economic and Risk Analysis (DERA
Study) documents that most of these assets were reinvested in institutional
government funds. The DERA Study concludes that this behavior is consis-
tent with a number of alternative explanations that include fights to quality,
transparency, liquidity, and performance. It also discusses the possibility
that redemption activity may have been partially caused by shareholders
exercising the redemption put associated with stable dollar pricing.

The SEC’s response to the market events of 2008 was to initially propose
(June 2009) and later adopt (February 2010) amendments to Rule 2a-7. The
amendments tightened the risk-limiting conditions of Rule 2a7 by, among
other things, requiring funds to maintain a portion of their portfolios in
instruments that can be readily converted to cash, reducing the maximum
weighted average maturity of portfolio holdings, and improving the quality
of portfolio securities. The specific portfolio constraints are:

• Liquidity. A money market fund must have daily liquidity of 10% and
weekly liquidity of 30% of total assets under management. Daily liquid
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assets include cash, U.S. Treasury bills, and securities that mature in
one day such as repurchase agreements. Weekly liquid assets generally
include these same securities plus certain government agency securities
and securities that mature in one week.

• Maturity. There are three maturity requirements: 1) individual se-
curities can have a maximum maturity of 397 days, 2) the weighted
average maturity (WAM) cannot exceed 60 days, and 3) the weighted
average life (WAL) cannot exceed 120 days. The difference between
WAM and WAL is that WAM can be calculated using interest reset
dates for floating rate securities.

• Portfolio Composition. Portfolio composition constraints generally re-
quire funds to hold no more than 5% of any individual first tier asset.
The maximum aggregate second tier concentration limit is 3.0%. A
fund may not hold more than 0.5% of any second tier security with
a maturity not to exceed 45 days. Illiquid securities can comprise at
most 5.0% of portfolio assets. A security is deemed to be illiquid if it
cannot be sold close to its fair value within seven business days.

The 2010 amendments to rule 2a-7 also include a number of operational
requirements. These include reporting portfolio holdings to the Commis-
sion on a monthly basis and stress testing. In addition, the Commission
broadened affiliates options to purchase fund assets and permitted a money
market fund that has broken the buck, or is at imminent risk of break-
ing the buck, to suspend redemptions to allow for an orderly liquidation of
fund assets. These amendments are designed to make money market funds
more resilient to certain short-term market risks, and to provide greater
protections for investors in the event that a money market fund is unable
to maintain a stable price per share.

Against this backdrop, the U.S. Securities Exchange Commission is con-
sidering additional options to further reform the MMF industry to address
potential problems associated with investor tendencies to redeem shares dur-
ing periods of stress. Concerns about the effect of heavy redemptions on
short-term funding markets have prompted the Financial Stability Over-
sight Council (FSOC) to recommend a number of regulatory alternatives in
a report issued in November 2012, which include, among other items, a float-
ing net asset value alternative and two capital buffer alternatives. The first
capital buffer alternative recommends a stand-alone 3.0% buffer; the second
recommends a 1.0% buffer plus a minimum balance at risk requirement.2

2See ”Proposed Recommendations Regarding Money Market Mutual Fund Reform,”
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In June 2013, the Commission proposed a rule that considers two sepa-
rate reform options.3 The first is the so-called floating net asset value option
which requires funds to price securities at their market values but permits
“basis point” rounding (round to $1.0000) at the portfolio level.4 The sec-
ond option recommends the use of liquidity fees and redemption gates once
certain liquidity thresholds are breached.5 Additionally, the proposal recom-
mends enhanced diversification disclosures, and stress testing requirements,
as well as reporting in Forms N-MFP and PF.

The release also considers the two capital buffer alternatives suggested
by FSOC and concludes that they are too costly relative to the proposed
alternatives. The purpose of this paper is to illustrate the economic ef-
fects of requiring a money market fund to be supported by a capital buffer.
Specifically, I document the risk and return characteristics of MMFs as-
sociated with a capital buffer, assess the differences between market and
amortized cost valuations, and characterize the economic implications of
capital buffers.

The model treats a money market fund as a portfolio of fixed income
securities that faces three distinct risks: 1) interest rate risk, 2) credit risk,
and 3) liquidity risk. This paper specifically addresses the first two and
abstracts from liquidity risk. The idea underlying my analysis is to under-
stand how the current regulatory framework affects the broad risks that a
fund faces.

Interest rate risk reflects the fact that changing market conditions cause
interest rates to change. The primary economic factor that determines the
level of interest rate risk is changing expectations about future inflation
rates. At a fundamental level, all securities are subject to interest rate risk,
including default-free U.S. Treasuries.

Money market funds also invest in securities that have credit risk. In
addition to requiring compensation for expectations about future market

Financial Stability Oversight Council (2012). McCabe, Cipriani, Holscher, and Martin
(2012) discuss the efficacy of a minimum balance at risk feature.

3The proposed rule also considers the possibility of combining the two options that
would work in tandem, but does not formally propose this as an alternative.

4The proposal also exempts Government and retail funds from the floating NAV re-
quirement. A retail fund is identified as one that limits redemptions to $1 million per day
for each shareholder.

5A liquidity fee of 2% would be imposed if a MMF’s level of weekly liquid assets fell
below 15%. The imposition is automatic unless the MMF board of directors determines it
is not in the best interest of the fund or that a lower fee would be in the best interest of the
fund. Once weekly assets fall below 15%, a fund may temporarily suspend redemptions.
The rule also proposes to exempt Government and retail funds from fees and gates.
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conditions, investors require an additional risk premium to compensate for
the possibility that a specific borrower may default. Credit risk varies over
time as the prospects for repayment change.

The third risk relates to the possibility that a fund may be forced to
rapidly liquidate investments at discounts to fundamental value (or even fire-
sale prices) to meet large-scale redemption requests. Since MMFs currently
value their portfolio assets at amortized cost, fund investors transact at
“prices” that, almost surely, reflect small deviations from market value. If a
MMF must liquidate assets to satisfy redemption requests, the fund realizes
capital gains and losses and returns become uncertain.

Section 2 describes the valuation of fixed income securities. Section 3
describes the econometric approach used to estimate the stochastic prop-
erties of interest rates and credit risk. It also describes the data used to
perform these estimates and provides parameter estimates. Section 4 ex-
plains my valuation model. In Section 5, I provide Monte Carlo simulation
evidence of how MMFs perform under the current regulatory baseline. Sec-
tion 6 considers the economic implications of a capital buffer. Section 7
offers conclusions.

2 The Valuation of Fixed Income Securities

This section describes the valuation of fixed income securities. Initial work in
this area by Vasicek (1977) was extended to default free-zero-coupon bonds
by Cox, Ingersoll, and Ross (CIR, 1985), and generalized to multivariate
affine diffusions (see, for example, Duffie and Kan (1996)).

I assume that state variables follow independent affine processes. Loosely
speaking, an affine process is one for which the instantaneous drift vector
and covariance matrix have affine dependence on the current state vector
Xt. I adopt this modeling framework for three reasons: 1) it provides a fully-
specified model of the term structure of interest rates, 2) it accommodates
credit risk in a straight-forward manner, and 3) it has closed-form solutions.

The affine processes are assumed to be independent one-dimensional
“CIR”diffusions, under which

dXt = κ (θ −Xt) dt+ σ
√
XtdBt (1)

where Xt is the instantaneous state variable, κ is the mean-reversion rate, θ
is the long-run mean, σ is the standard deviation of the state variable, and

7



Bt is a standard Brownian motion process.6 The long-run variance of Xt is

lim
t→∞

var (Xt) =
σ2θ

2κ
. (2)

2.1 Valuation of Zero-Coupon Default-Free Bonds

To value a default-free zero coupon bond, I make a distinction between the
“physical” (“P”) and risk-neutral (“N”) densities. The physical density is
useful for characterizing actual price behavior, while the risk-neutral density
allows me to value contingent claims. Based on the assumption that the spot
interest rate follows a CIR process, the physical process for the instantaneous
spot rate of interest rt is defined as:

drt = κr (θr − rt) dt+ σr
√
rtdB

P
t (3)

where dBP
t is a standard Brownian motion under the physical density. In

the absence of arbitrage opportunities, it can be shown that the price of any
contingent claim can be valued under the corresponding risk-neutral density
Q, i.e.,

drt = κ̂r

(
θ̂r − rt

)
dt+ σr

√
rtdB

Q
t . (4)

where

κ̂r = κr + ηr

θ̂r =
κrθr
κr + ηr

and ηr is the market price of risk associated with the default-free rate of
interest. Using an application of Ito’s lemma, CIR (1985) show that the
local expected return equals

rt + ηrrt
∂b (t, T )

∂r
/b (t, T ) , (5)

where ηrrt is the covariance of changes in the spot interest rate with changes
in optimally invested wealth and b (t, T ) is the value of a zero-coupon bond
at time t that pays $1 at time T . The compensation for risk as measured by
the risk premium in Eq. (5) will be positive if ηr is negative since ∂b

∂r < 0.
The value of a zero-coupon bond that pays $1 at maturity is

b (t, T ) = EQt

[
exp

(
−
∫ T

t
rzdz

)]
= eᾱr(τ)+β̄r(τ)rt (6)

6The instantaneous state variable will never reach zero provided that 2κθ > σ2.
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where ᾱ (τ) and β̄ (τ) are coefficients that only depend on τ = T − t. The
explicit solutions to ᾱ (τ) and β̄ (τ) are given below.

β̄r (τ) =
2 (eγrτ − 1)

(γr + κ̂r) (eγrτ − 1) + 2γr

ᾱr (τ) =
2κ̂rθ̂r
σ2
r

log

[
2γre

(κ̂r+γr)τ/2

(γr + κ̂r) (eγrτ − 1) + 2γr

]
γr =

√
κ̂r + 2σ2

r

2.2 Valuation of Zero-Coupon Bonds with Credit Risk

Next I describe the valuation of a risky zero-coupon bond that provides
for a fractional recovery of the face value equal to ω. Introducing credit
risk requires the specification of the “physical” intensity rate process. I
assume that the instantaneous intensity rate also follows an independent
CIR process,

dλt = κλ (θλ − λt) dt+ σλ
√
λtdB

P
t , (7)

and has a risk-neutral specification defined in an analogous manner to Eq.
(4). Under the intensity density, the time t conditional risk-neutral proba-
bility of survival to a future time T is

p (t, T ) = EQt

[
exp

(
−
∫ T

t
λzdz

)]
= eᾱλ(τ)+β̄λ(τ)λt . (8)

Following Duffie and Singleton (2003), let 1[τ>s] take the value 1 if there
has been no default prior to s where τ ∈ [t, s). They show that the price of
a defaultable zero-coupon bond equals

d (t, T ) = d0 (t, T ) + ωEQt

[
exp

(
−
∫ τ

t
rsds

)
1[τ≤T ]

]
(9)

where

d0 (t, T ) = EQt

[
exp

(
−
∫ T

t
rsds

)
1[τ>T ]

]
. (10)

The first term in Eq. (9) is the value of the survival contingent payment and
the second term is the present value of the recovered proceeds contingent on
a default occurring prior to maturity. Lando (1988) has shown that d0 (t, T )
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is valued as

d0 (t, T ) = EQt

[
exp

(
−
∫ T

t
(rs + λs) ds

)]
= EQt

[
exp

(
−
∫ T

t
rsds

)]
EQt

[
exp

(
−
∫ T

t
λsds

)]
= b (t, T ) p (t, T )

The second line follows because, by assumption, rt and λt are uncorrelated;
the third line simply reflects the definitions of b (t, T ) and p (t, T ).

The solution to the second term in Eq. (9) is

ωEQt

[
exp

(
−
∫ τ

t
rsds

)
1[τ≤T ]

]
= ω

∫ T

t
b (t, u)π∗ (t, u) du (11)

where

π∗ (t, u) = − d

du
p (t, u) = p (t, u)λ (u) (12)

Although not available in closed-form, the solution to the integration in
Eq. (11) is readily calculated numerically using recursive adaptive Simpson
quadrature.

3 Estimation of the Stochastic Properties of In-
terest Rate and Credit Risk Processes

Parameter estimates of the default-free rate of interest and the intensity rate
process are estimated with a Kalman filter.7 This approach is particularly
useful when, as is the case here, the underlying state variables are unob-
servable. The Kalman filter employs a recursive algorithm that exploits the
theoretical affine relation between the physical and risk-neutral densities.
This recursion allows me to infer the underlying state variables of interest
along with the underlying parameters of the distributions.

Estimation begins by specifying a system of measurement and transition
equations for the unobserved state variables under the assumption that it
follows a CIR diffusion. The idea is to start with a series of observable
bond yields that are measured with error, possibly due to differences in
the bid and ask prices. Since these yields depend on the unobserved state

7Duffee (2002) and Duffee and Stanton (2012) demonstrate that the Kalman filter is a
reasonable techniques when estimating one-factor square-root diffusions.
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variables (e.g., the spot rate of interest), the Kalman filter separates the
state variables from the “noise” using a recursive forecasting procedure.

The algorithm begins with a set of initial parameter values and an ini-
tial estimate of the accuracy of the initial parameters. Using these starting
values, the value of the measurement equation is inferred. The linearity as-
sumption underlying the Kalman filter permits the calculation of the condi-
tional moments of the measurement equation. The algorithm then compares
the predictions to the observed values. This allows me to update my infer-
ences about the current value of the transition system. These updated values
are then used to predict the subsequent values of the state variables. This
procedure is repeated for each day in my sample period, which allows me to
construct a time series of estimates of the underlying state variables. This
implicitly creates a likelihood function, which can be treated as an objective
function to estimate the parameters using maximum likelihood estimation.

3.1 Estimation of the Process for the Default-Free Rate of
Interest

The data used to estimate the parameters that characterize the dynamics of
the default-free rate of interest consist of a time series of T ×M zero-coupon
yields with

yt,m = − ln (Pt,m)

τt,m
(13)

for t = 1, · · · , T , m = 1, · · · ,M , and where yt,m is the yield on a zero-
coupon bond with price Pt,m and years to maturity τt,m. I use yields from
U.S. Treasury securities that have 30, 90, 120, 360, and 720-days to maturity.
Prices are observed on a daily basis over the period January 4, 2000 through
March 22, 2012.

3.1.1 The measurement equation

The measurement equation that links the observed yields to the theoretical
yields (see Eq. (6)) is defined as follows:

yt,m = − 1

τm
ᾱr (τm)− 1

τm
β̄r (τm) rt + et,m (14)

where the measurement error et,m is assumed to be Normally distributed,
i.e., et,m ∼ N

(
0, h2

t

)
. For each day t, this can be expressed as

yt = At +Btrt + et (15)
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where yt is M×1, et is M×1, At = (ᾱr (τ1) /τ1, · · · , ᾱr (τM ) /τM ), and Bt =(
β̄r (τ1) /τ1, · · · , β̄r (τM ) /τM

)
, The measurement error vector is assumed to

be Normally distributed such that e ∼ N (0, H) where e is the T × 1 error
vector that has covariance matrix H where

H =


h2

1 0 . . . 0
0 h2

2 . . . 0
...

...
. . . . . .

0 0 . . . h2
T

 .

3.1.2 The transition equation

The transition equation characterizes the evolution of the state vector rt
over time. It also relies on the assumption that rt is Normally distributed.
Since, under a CIR process, rt follows a non-central χ2 distribution, this
condition is violated.

Ball and Torous (1996) show that, over small time intervals, diffusions
arising from stochastic differential equations behave like Brownian motion.
As a result, the assumption that rt can be approximated by a Normal dis-
tribution is sensible. For estimation purposes, I use the conditional mean
and variance of rt under the non-central χ2 distribution as:

rt ∼ N
(
µ (rt) , h

2
t

)
(16)

where ∆t = 1
360 and

µ (rt) = θr
(
1− e−κr∆t

)
+ e−κr∆trt−1

h2
t =

θrσ
2
r

2κr

(
1− e−κr∆t

)2
+
σ2
r

κr

(
e−κr∆t − e−2κr∆t

)
.

Based on this approximation, the transition equation is described as follows:

rt = µ (rt) + εt (17)

where εt ∼ N
(
0, h2

t

)
.

3.1.3 Sample Characteristics

Panel A of Table 1 depicts the summary statistics for U.S. Treasury yields
over the sample period. The mean values range from 1.7451% for 30-day
yields to 2.3674% for 720-day yields with corresponding medians of 1.21% to
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2.04%. Figure 1 illustrates the U.S. Treasury yield curve from January 2000
through March 2012. As you look at the figure, the leading axis represents
the evolution of yields over time, while moving from front to back depicts
different maturities (shorter maturities are closest to the leading edge).

Figure 1: U.S. Treasury yield curve from January 2000 through March 2012.

3.1.4 Parameter Estimates

Panel A of Table 2 presents parameter estimates for the default-free rate
of interest. The instantaneous spot rate of interest has an elastic force
of 1.3894 that causes the spot-rate of interest rt to revert to its long-run
mean of 0.87%. The standard error for the estimate of κr indicates there
is significant mean-reversion in the default-free rate of interest. The spot
rate rt has an annualized volatility of 8.07%. Based on Eq. (2) and the
parameter estimates in Panel A of Table 2, the spot rate of interest has a
long-term standard deviation equal to 0.00452.

To provide some indication of the speed at which the estimated mean-
reversion parameter causes volatility to revert to the long-run mean θr, κr
can be used to infer the spot interest rate’s “half-life.” The half-life is defined
as the time required for the expected future spot interest rate to revert
halfway to the long-run mean. The half-life is determined by finding the
date, ts, for which

E (rts |rt) =
1

2
(rt + θr) (18)

Following Cox, Ingersoll, and Ross (1985), the estimate for the expected
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future spot interest rate is given by

E (rts |rt) = rte
−κr(ts−t) + θr

(
1− e−κr(ts−t)

)
(19)

Examination of Equations (18) and (19) indicates that the half-life is
determined by setting e−κrτ equal to one-half and solving for τ . Given that
κr equals 1.3894, the expected time for an arbitrary spot rate of rt to revert
halfway to its long-run mean is 0.50 years.

The default-free rate of interest has a market price of risk equal to
−0.3748. To provide some intuition for its economic importance, the associ-
ated risk premium can be estimated from Eq. (5), i.e., ηrrt

∂b
∂r/b = rtβ̂r(τ).

Assuming the spot rate of interest rate equals its long-run mean of 0.87%,
the annualized risk-premium associated with default-free bonds is 17.6 basis
points.

3.2 Estimation of the Process for the Intensity Rate

The parameters for the intensity process are estimated in an analogous man-
ner using 30, 90, and 120-day credit spreads. The credit spread is calculated
as the difference between the maturity-matched yields for AA Financial
Commercial Paper and U.S. Treasuries securities. Credit spreads are used
to estimate the process for the spot intensity rate because they filter out
contemporaneous information about the spot rate of interest.

3.2.1 Sample Characteristics

Panel B of Table 1 depicts the summary statistics for credit spreads over the
sample period. Unlike the yields for Treasuries, the mean and median credit
spreads are not monotonically increasing with maturity. Mean values range
from 0.29% for 30-day spreads to 0.34% for 90-day spreads, about double
their median values. These skewed results are an implication of including
the 2007-2008 Financial Crisis in the estimation period (see Figure 2), which
also accounts for the comparatively large standard deviations for the credit
spreads of 0.45% to 0.46%. Because of this skewness, I use the mdeian
values.
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Figure 2: AA financial commercial paper credit spread curve from January
2000 through March 2012.

Figure 3 illustrates the credit spread curves in the post-Financial Crisis
period (March 2009 through March 2012).

Figure 3: AA financial commercial paper credit spread curve from March
2009 through March 2012.

3.2.2 Parameter Estimates

Panel B of Table 2 indicates that the intensity rate process has a mean-
reversion factor of 1.7632 that causes the spot intensity rate λt to revert to
the long-run mean of 0.13%. The spot intensity rate λt has a volatility rate
of 3.72%. Given that κλ equals 1.7632, the expected time for an arbitrary
spot rate of λt to revert halfway to its long-run mean is 0.39 years.

The intensity rate has a market price of risk (ηλ) equal to -1.4454. This
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implies that the corresponding risk premium is 22 basis points when Eq. (5)
is evaluated at its long-run mean of 0.13%.

4 Valuation of Money Market Funds

A MMF is a portfolio of fixed income securities. At time t, the shadow price
of a fund is the market value of its assets

MMFt =

T∑
s=t+1

(m (t, s) b (t, s) + n (t, s) d (t, s)) (20)

where m (t, s) is the number of units of default-free zero-coupon bonds
(b (t, s)) with maturity in s days and n (t, s) is the number of units of risky
zero-coupon bonds (d (t, s)) with maturity in s days. The fund has an asso-
ciated duration defined as:

Dt =

T∑
s=t+1

s× (m (t, s) b (t, s) + n (t, s) d (t, s)) /MMFt. (21)

Each MMF has a specific risk-return profile that is determined by the
duration of the portfolio and the mix of risky and default-free securities. I
assume that I can approximate the investment strategy of a fund’s advisor
by selecting a target duration and the mix of risky and default-free securities.
The idea is to build a parsimonious model that has the ability to capture
the risk-return dynamics of the underlying portfolio.

The initial portfolio holdings at time 0 are established by choosing a
target duration, D∗, and the proportion of default-free bonds, φ. This is
tantamount to assuming that the fund manager adopts a particular style
and maintains this investment philosophy over the fund’s life. It ignores,
for example, the possibility that a manager may endogenously respond to
changing market conditions by adjusting the mix and duration of securities
to mitigate certain exposures.

4.1 Initial Portfolio

To calibrate the initial state of the fund, I choose the number of maturities
T̂ so that the calculated duration matches the target duration. That is,
choose T̂ such that

T̂ = min {τ : |D∗ −D0 (τ) | = 0, τ = 1, 2, · · · ,∞} , (22)
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subject to the constraints that the number of default-free and risky bonds
reflect the proportion φ, i.e.,

m (t, s) = Wφ/T̂ ,∀s, 1, · · · , T̂ ,
n (t, s) = W (1− φ) /T̂ ,∀s, 1, · · · , T̂ ,

and where W is a normalizing constant that sets the initial value of the fund
to $1.8

The time 0 value is

MMF0 =
T̂∑
s=1

WT̂−1 (φb (t, s) + (1− φ) d (t, s)) (23)

and has duration

D0 =

T̂∑
s=1

sWT̂−1 (φb (t, s) + (1− φ) d (t, s)) /MMF0. (24)

Given T̂ , the normalizing constant W is calculated as:

W = D0

 T̂∑
s=1

T̂−1 (φb (t, s) + (1− φ) d (t, s))

−1

. (25)

4.2 Money Market Valuation at Time t

This section establishes a methodology for evaluating intertemporal changes
in a fund’s shadow price. Throughout the paper, I use the terms market
value and shadow price interchangeably. I characterize changes in the value
of a portfolio of fixed income securities by simulating the time series for both
the default-free rate of interest and the process that characterizes defaults.

4.2.1 Monte Carlo simulation of CIR processes

An advantage of the affine structure is that the distribution of a CIR-type
process over a given time period of length τ years is distributed as a non-
central Chi-Square with d = 4κθ/σ2 degrees of freedom and non-centrality

8The requirement that the number of default-free and risky bonds are the same for every
maturity is without loss of generality. It simply provides a convenient way to calibrate
the initial portfolio holdings.
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parameter ζ (Xt, τ) where

ζ (Xt, τ) =
4κe−κτXt

σ2 (1− e−κτ )
. (26)

To simulate a time series for the spot interest rate and default intensities
for days t = 1, · · · , T̂ , I use the following algorithm:

• For day t, I estimate the instantaneous spot rate of interest, rt by tak-
ing a draw from a non-central Chi-square distribution, χ2

nc (d, ζ (rt−1, τ)).

• The day t spot interest rate is calculated as

rt = σ2
r

(
1− e−κrτ

)
χ2
nc (dr, ζ (rt−1, τ)) (27)

• I next estimate the day t instantaneous intensity rate, λt by taking a
draw from a non-central Chi-square distribution for the spot intensity
rate process, χ2

nc (d, ζ (λt−1, τ)).

• The day t intensity rate is then calculated as

λt = σ2
λ

(
1− e−κλτ

)
χ2
nc (dλ, ζ (λt−1, τ)) (28)

• I assume that all bonds have a common intensity process λt and that
defaults across different maturities are independent. To determine
whether a bond with maturity s defaults on day t, I calculate the
probability of default over day t using p (t, t+ 1) from equation (7). I
then take a draw from the implied binomial distribution to determine
whether there has been a jump to default. If a default occurs, I assume
that It (s) = 1 and the value of a risky zero-coupon bonds equals the
recovery rate. If there is no default, It (s) = 0. I repeat this process
for all maturities s = 1, · · · , T̂ .9

9To facilitate the comparison of risk across portfolios with different durations, I nor-
malize the number of bonds so that each portfolio holds the same number of bonds. For
example, if a default-free 60-day duration portfolio is constructed with 120 bonds and a
90-day duration portfolio requires 180, the 60-day portfolio would be adjusted so that on
each day it would hold three bonds and the 90-day portfolio would hold 2 bonds. This
would result in each portfolio being identically concentrated, in that, each would hold
exactly 360 bonds. In this manner, defaults, which are independent of maturity, occur
with the same frequency across portfolios.
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4.2.2 Portfolio decisions at time t

The next step is to design an algorithm for reinvesting proceeds from ma-
turing bonds subject to two constraints: 1) maintain the target duration
D∗ and 2) reinvest the proceeds to maintain a constant proportion φ of
default-free bonds to total bonds. Let Xt denote the cash flow generated by
expiring bonds at time t. Since bonds are zero coupon, the holder receives
the face value of $1 at maturity. This implies that m (t− 1, t) is the value of
expiring default-free securities. Analogously, n (t− 1, t) is the value of risky
zero coupon bonds conditional on no default and n (t− 1, t)ω reflects the
amount that is available after a default event. Taken together,

Xt = m (t− 1, t) + n (t− 1, t) ((1− It (0)) + ωIt (0)) . (29)

The proceeds Xt are reinvested in zero-coupon bonds that have a maturity
T ∗ where T ∗ is the maturity that sets the portfolio duration equal to the
target duration D∗.10 Since all bonds are zero-coupon and each bond’s
duration equals its maturity, I solve for the maturity date that results in the
current duration that is closest to the target duration. This is estimated as

T ∗ = floor ((D∗ − CurDur) (MMFt/Xt)) (30)

where CurDur is the duration of the portfolio excluding Xt, i.e.,

CurDur =
T−1∑
s=t

s× (m (t− 1, s) b (t, s+ 1) + n (t− 1, s) d (t, s+ 1)) /MMFt.

(31)
Having identified the maturity of the bonds that will achieve the target
duration, the fund advisor allocates Xt between default-free and risky zero-
coupon bonds as follows:

m (t, T ∗) =
φXt

(φb (t, T ∗) + (1− φ) d (t, T ∗))

n (t, T ∗) =
(1− φ)Xt

(φb (t, T ∗) + (1− φ) d (t, T ∗))

5 Time Series Properties of Money Market Funds

This section examines the time series properties of money market funds
under the “baseline” as it currently exists under rule 2a-7. As I have noted

10As a practical matter, the duration of the portfolio can be reasonably approximated
by reinvesting the proceeds in a zero-coupon bond that matures in T̂ .
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above, the most important economic consequence of the 2010 amendments
to rule 2a-7 is to constrain the risk taking opportunities of fund managers
relative to the regulatory framework that preceded them..

I evaluate how different combinations of risky and default-free securities
alter the risk-return characteristics of MMFs. At one extreme, I consider
a portfolio that only holds risky securities that are designed to behave like
securities with a AA bond rating and at the other, a portfolio that is equiv-
alent to a Treasury bond portfolio. For simplicity, I refer to the extreme
portfolios as “risky” (φ = 0.00) and “default-free” (φ = 1.00) throughout
the remainder of the paper.

5.1 Monte Carlo simulation

The Monte Carlo simulation is based on the following parameters. The long-
run rate assumptions for the spot interest and intensity rates respectively
are 0.87% and 0.13% (see Table 2). I assume that the recovery rate for
security defaults is 40%. This assumption reflects the typical recovery rate
convention used to price credit default swaps when the underlying reference
security is a senior debt obligation. Finally, the evaluation period is 360
days.

The analysis reports results for portfolios that have different combina-
tions of default-free and risky securities where φ defines the proportion of
default-free securities held in the MMF, i.e., φ = {0.00, 0.25, 0.50, 0.75, 1.00}.

The simulation is based on the following algorithm:

1. The starting values for r1 and λ1 are set equal to their long-run means
of 0.87% and 0.14%, respectively.

2. Based on the simulation parameters and initial values for the spot
rates, solve for the number of maturities T̂ that result in a portfolio
duration of 60 (or 90) days (see Eq. (21)).

3. To create a single 360-day sample path, I draw T̂+360 spot interest and
intensity rate pairs {rt, λt} using the procedure described in Section
4.2.1. The first T̂ days are used to calculate the initial portfolio; the
next 360 days are used to evaluate the time-series behavior over the
estimation period. The initial portfolio formation period of T̂ days is
required so that each security has a corresponding valuation based on
amortized cost.

4. To facilitate the comparison of the shadow price to its amortized cost
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(AC), I calculate AC for the initial portfolio using the following algo-
rithm:

(a) For each day t, t = 1, · · · , T̂ , calculate the values of b(t, T̂ ) and
d(t, T̂ ) with T̂ days to maturity using {rt, λt}. Note that this
holds the maturity for all bonds purchased on day t constant.
This ensures that on day T̂ (the last day of the initial portfolio
formation period), I have initial prices for bonds with maturities
ranging from 1 to T̂ days.

(b) At day T̂ , the amortized cost ACT̂ is

ACT̂ =
T̂∑
s=1

m(T̂ , s)b(s, T̂ )eyb(s,T̂ )(T̂−s)/360

+ n(T̂ , s)d(s, T̂ )eyd(s,T̂ )(T̂−s)/360

where yb(t, T̂ ) and yd(t, T̂ ) denote the corresponding yields to
maturity. These are calculated as yx(s, T̂ ) = ln(x(s, T̂ )−1). I
assume that amortized cost accrues at each security’s yield to
maturity. This is an approximation to the approach specified
in rule 2a-7, which requires straight-line amortization over the
security’s life.

(c) For each day t, t = T̂ + 1, · · · , T̂ + 360, the portfolio SP and AC
are updated using {rt, λt}.

(d) This is repeated for M sample paths (M = 2, 500).

5.2 Buy-and-hold returns based on amortized cost

Currently, the U.S. money market fund industry is permitted to use amor-
tized cost accounting to value portfolio securities. This implies that fund
managers are allowed to price the fund at amortized cost even though the
underlying portfolio fluctuates in value as market conditions change. Amor-
tized cost is, loosely speaking, the accounting or book value of the security.

Figure 4 depicts a number of representative sample paths from a Monte
Carlo simulation. Figure 4a is the market value of the fund under the
assumptions described in 4.1; Figure 4b is the amortized cost of the MMF
along the same simulation paths. These figures demonstrate that amortized
cost is less volatile than the underlying shadow price.
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(a) Shadow Price

//

(b) Amortized Cost

Figure 4: Representative sample paths for a MMF that holds 75% risky
securities over a 360-day period.
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The main difference between tracking performance using amortized cost
valuations and a fund’s shadow price is how income accrues.11 Amortized
cost valuations reflect the ratable accrual of interest over the bond’s life
plus realized capital gains and losses. By contrast, the shadow price not
only reflects accrued interest but also realized and unrealized capital gains
and losses.

Figure 5 provides a more granular look at the differences between shadow
prices and amortized cost along two representative sample paths assuming
an investor follows a buy-and-hold strategy that reinvests all distributions.12

It can be seen that deviations from amortized cost are mean reverting.

5.2.1 Statistics for buy-and-hold returns based on amortized cost

Amortized cost valuation smooths but does not eliminate the price fluctu-
ations caused by changing market conditions. The intuition can be seen
best by noting that, when default-free bonds are held to maturity, capital
gains and losses net to zero. It then follows that, without default or sales
at a loss, differences between the shadow price and amortized cost represent
idiosyncratic risk - a type of risk that is not priced in equilibrium.

Table 3 presents summary statistics from the Monte Carlo simulation.
Panels A and B respectively report statistics for buy-and-hold returns based
on amortized cost and the shadow price. The analysis uses a 360 day invest-
ment horizon to evaluate the impact on portfolios with 60-day durations.
The columns depict results for portfolios that range from being fully in-
vested in risky securities (φ = 0.00) to those fully invested in default-free
securities (φ = 1.00).

Panel A reports that amortized cost returns for 60-day duration portfo-
lios range from 0.9410% to 0.9126%. The relatively small spread between
risky and default-free securities (2.84 b.p.) suggests that, even the riskiest
portfolio is not expected to be very volatile. The standard deviations of re-

11Money market funds either distribute or accumulate income. In the U.S., almost
all funds distribute income. Funds that distribute income do so through either periodic
(monthly) dividends or share reinvestments. Funds that accumulate income simply add
their daily income to the daily share price. Accumulating funds also have tax advantages
over distributing funds in some jurisdictions like Europe, but in the U.S. distribution is
the tax-advantaged option. For example, by adding income to the daily share price rather
than paying it out, (1) the fund shareholders’ receipt of the income is postponed, and (2)
the earned income is converted into capital gains, which might be taxed at a lower rate.
Nearly all U.S. money market funds distribute income monthly.

12By definition, a buy-and-hold strategy abstracts from the possibility of modeling
shareholder redemptions.

23



(a) Path 1

//

(b) Path 2

Figure 5: Monte Carlo simulation results for two representative paths of a
MMF that holds 75% risky securities over a 360-day period.
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turns across different portfolios confirm this conjecture. I find that standard
deviations are economically small, ranging from 0.2701% to 0.2626%. As a
point of reference, the mean yield on a 30-day Treasury security is 1.7451%
with a standard deviation of 1.6991%, resulting in a mean-volatility ratio
of 1.03. By contrast, the mean-volatility ratio for a portfolio of default-free
securities from the Monte Carlo simulation is 3.92 (0.9126/0.2626) - almost
four times higher. This is largely attributable to the mean-reverting nature
of the processes that characterize interest rate and credit risk, as well as,
the risk constraints imposed by rule 2a-7 on weighted average maturity.

5.2.2 Statistics for buy-and-hold returns based on shadow price

Panel B of Table 3 summarizes the time-series properties of 360-day buy-
and-hold returns for the fund’s shadow price. The mean shadow price (SP )
returns range from 0.9180% to 0.9162% and have corresponding standard
deviations ranging from 0.2822% to 0.2811%. To place these results into
context, the long-run yield for the Treasury fund (φ = 1.00%) of 0.9162%
is close to the estimated unconditional long-run physical mean of 0.87%.
Also note that the mean returns based on amortized cost in Panel A are
higher than the corresponding SP returns. This follows because amortized
cost returns do not reflect security defaults.13 I present unadjusted returns
because they are the basis upon which shareholder returns under the capital
buffer are determined.14

Taken together, the volatility rates for SP and AC returns suggest that
there is relatively little times series variation in market values under the
current regulatory baseline. For example, the SP mean/volatility ratio for
the “risky” portfolio is 3.953 (0.9180/0.2322). The same ratio for AC returns
is 3.484 (0.9410/0.2701). For purposes of interpretation, it should be noted
that all of the simulation runs are initialized by assuming that the spot
interest and intensity rates are seeded at their long-run means. Intuitively,
this equivalent to starting the simulation runs in a period of “normal” market
conditions.

13The median estimates of SP and AC returns are very close to one another. This is
attributable to the low default rates for individual securities and the likelihood that the
median price paths do not reflect a security default. If I adjust amortized cost returns for
security defaults as would be the case under the current regulatory baseline, there is very
little difference between SP and AC returns.

14For an analysis of amortized cost returns that reflect security defaults, see Tables 5
and 7 of the RSFI (2012), study.
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5.2.3 Statistics for relative AC/SP valuation ratios

Table 4 presents summary statistics characterize the distribution of the ratio
of amortized cost to shadow price across all 360 days. I make four obser-
vations. First, the mean and median are effectively 1.00 across all portfo-
lios, indicating that, on average, the pricing is very similar across different
valuation methodologies. Second, it is possible to “break the buck” - the
maximum value across all portfolios is 1.0060. Third, a fund breaks the buck
with low probability - the 99-percentile value for riskiest portfolio is 1.0027.
Note also that a MMF that is fully invested in default-free securities never
breaks the buck. Finally, none of the funds break the buck on the upside -
all ratios exceed 0.9950.

5.2.4 First passage time statistics

One of the limitations of the statistics reported in Table 4 is that they
evaluate the likelihood of “breaking the buck” on any given day. A more
natural way to evaluate the impact of a fund breaking the buck is to consider
whether it has done so at any time over a particular holding period. Table 5
directly addresses this point by providing additional information about the
distribution of returns and volatility across different risk portfolios.

Panel A of Table 5 reports the mean first passage time until the difference
between the shadow price and amortized cost falls below a particular thresh-
old over a 360-day holding period for 60-day duration portfolios. Panel B
reports the frequency that this spread falls below a particular threshold.

Panel A indicates that credit risk induces volatility. Here one sees that
the mean first passage time until a MMF first has a shadow price that falls 5
basis points below amortized cost is 183.962 days. The first passage time also
rises rapidly as the threshold increases. For example, the first passage time
to a 10 b.p. threshold is is 308.801 days. The first passage time increases to
348.811 days for a 25 b.p. threshold.

Panel B reports the probability that a MMF hits specific thresholds
at least one time prior to year end. The results indicate that the failure
rate rapidly decreases as the size of the buffer increases. For example, the
probability that a “risky” MMF will have its shadow price drop at least 5
b.p. below amortized cost sometime during the year is 71.520%. As a point
of reference, a portfolio that only invests in default-free securities hits a 5
b.p. threshold 60.240% of the time.

An interesting aspect of of this analysis is the importance of credit risk.
Note that there is virtually no chance that a fund holding default-free se-

26



curities would experience a decline in shadow price relative to its amortized
cost by an amount as small as 25 basis points. By contrast, there is 4.880%
chance that a MMF with risky securities will experience a 25 b.p. decline.
An alternative way to consider these findings is in terms of the complement
- the survival rate. If a fund only hits the 25 b.p. threshold 4.880% of the
time, the probability that a fund never experiences a loss of 25 b.p. relative
to its amortized cost is 95.220%.

Consistent with Tables 3 and 4, Table 5 indicates that the 2010 amend-
ments to rule 2a-7 do not eliminate the possibility of breaking the buck. For
a portfolio that has 100% of its assets under management invested in secu-
rities that have credit risk, the mean time to breaking the buck is 359.653
days. If there was no chance that the fund would ever break the buck, the
mean time would be 360 days. Panel B reports that the frequency a MMF
breaks the buck is 0.240%.

6 Money Market Funds with a Capital Buffer

A capital buffer is an alternative approach for structuring a MMF. It is
designed to decompose a traditional fund into two separate components - a
capital buffer (B shares) and a stable value claim (A shares). The providers
of the capital buffer, possibly the plan sponsor, absorb all gains and losses
on the portfolio in excess of the amortized cost of the underlying assets in
exchange for a capital charge that has a promised yield of yB. The stable
value claim provides investors with a payout that is equal to the amortized
cost of the the underlying assets less the capital charge, provided the buffer
remains solvent.

6.1 Valuation of the capital buffer

I assume that the initial capital buffer is funded at time 0 by investing B0

in the same portfolio of assets as those in the MMF. By assuming that the
buffer replicates the MMF portfolio, I preserve the risk-return characteristics
of the original MMF, making it possible to compare different alternatives.15

This implies that the total assets under management are (1 +B0)MMFt.
Since the capital buffer absorbs any gains or losses in excess of amortized

15Since the assets of shareholders and the provider of the capital buffer are co-mingled,
the risk-return characteristics of the MMF reflect these combined risks. For example, if
I assume that the buffer invests in default-free securities, it effects the overall risk-return
trade off.
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(a) A shares (b) B shares

Figure 6: Monte Carlo simulation results for a MMF with a duration of 60.0
days and φ = 1.00% and a capital buffer of 2.0%

cost of the fund assets, at the end of each day t, B shares investors have

Bt = max
(

0, (1 +B0)MMFt −ACt +B0

(
eyBt/360 − 1

))
(32)

where Bt is the value of the capital buffer at day t, ACt is the amortized
cost of the fund assets on day t, and yB is the promised yield on the capital
buffer which continuously accrues over a 360 year.

The A shares at day t are valued as follows:

At = min
(
ACt −B0

(
eyBt/360 − 1

)
, (1 +B0)MMFt

)
= (1 +B0)MMFt −Bt (33)

Eq. (33) simply reflects the identity that the sum of At and Bt must be
equal to (1 +B0)MMFt. Figure 6 presents a look at the payoffs for A and
B shares for fifteen representative sample paths based on 200 b.p. capital
buffer. Figure 6(a) shows that the A shares essentially trade at their amor-
tized cost net a charge for providing the buffer, while Figure 6(b) demon-
strates that the B shares display considerable volatility relative to the size
of the capital buffer - a direct implication of a 98% leverage ratio.

6.2 How a capital buffer functions

The capital buffer is designed to absorb the fluctuations in the value of the
fund’s underlying assets relative to their amortized cost. An interesting
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feature of the buffer is that it is expected to absorb the same amount of
risk regardless of its size. That is, the deviations between amortized cost
and market value are determined by the underlying portfolio assets and are,
therefore, independent of buffer size. The size of the buffer does, however,
determine how likely it is to fail and its inherent risk absorbing capacity. In
equilibrium, capital buffer investors must earn an expected rate of return
that compensates them for this risk. This implies that as one reduces the
size of the capital buffer, the expected return must increase. While this
is, of course, accurate, this intuition provides an incomplete picture of the
underlying economics.

The best way to understand how a buffer investor is compensated is to
consider a fund that is fully invested in default-free securities. By abstract-
ing from defaults, I can focus on fluctuations between market value and
amortized cost. Since these deviations are mean reverting and converge to
the same value at maturity, the risk-return profiles for a security whose pay-
offs reflect current market values or one whose prices are based on amortized
cost are very similar. In effect, the deviations that a capital buffer (for a
default-free portfolio) is designed to absorb reflect idiosyncratic risk rather
than systematic (or “market”) risk.16

In this context, the buffer payoffs are analogous to an equity claim on
the underlying assets. This explains why a buffer investor demands higher
expected returns as the buffer becomes small, even if the underlying assets
are default-free.17 In effect, a buffer investor requires compensation for
bearing the financial risk associated with the leverage implicit with specific
buffer levels.

Assume now that the portfolio holds risky securities. The buffer is ex-
pected to not only absorb deviations due to changing interest rates and
credit quality, but also losses associated with defaults. As a result, a buffer
investor requires compensation for bearing both risks. In equilibrium, if
shareholders do not bear credit risk, they will not be able to demand yields
in excess of the default-free rate. To the extent that the buffer is of suffi-

16A small caveat is that a very small buffer would only remain solvent part of the time.
For example, a 10 b.p. buffer would remain solvent 74.760% of the time (Panel B, Table 5,
φ = 1.00, 10 b.p.), 1- 25.240%). That is, as the capital buffer becomes small relative to the
risk it is designed to absorb even a buffer that supports a portfolio ofdefault-free securities
takes on “market” risk because not all large losses can be fully absorbed. It then follows
that, if the capital buffer level is set sufficiently high so that the probability of failure
approaches zero, buffer investors cannot demand additional compensation for bearing any
of these price deviations because idiosyncratic risk is not priced in equilibrium.

17The underlying assets include the investments made by the fund advisor plus those
that are used to fund the capital buffer.
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cient size to absorb security defaults, MMFs are effectively converted into
“synthetic” “Treasury” funds.

6.3 The promised yield demanded by providers of buffer cap-
ital and its expected cost to MMF shareholders

In equilibrium, the promised rate of return is estimated by finding the rate
yB that sets the present value of the future cash flows to B shareholders
under the risk-neutral density equal to the initial capital contribution, i.e.,
EQ

(
exp

(
−
∫ τ
t rsds

)
BT (yB)

)
= B0.

Table 6 presents an analysis of the promised yields for capital buffer levels
ranging from 10 to 300 b.p. Panels A through E report results for portfolios
where the proportion of default-free securities ranges from 0% to 100%.
Since the results are comparable across all panels, I focus my discussion
of the results on Panel A without loss of generality. The promised yield
respectively ranges from 31.1408% to 1.2093%. The expected buffer cost
(BC) is calculated as

BC = B0 × yb × (1− FailureRate) (34)

where the Failure Rate denotes the probability that the buffer fails at some
point over the 360 day investment horizon (estimates are presented in Table
6). The expected per dollar buffer costs range from 2.8848 b.p. for a buffer
of 10 b.p. to 3.6500 b.p. for buffers that exceed 70 b.p.s. Note that once
this critical threshold is reached, the expected cost of the buffer remains
constant. This result is best explained by examining Table 7, which presents
the associated Failure Rates for different buffer levels ranging from 10 to 70
b.p. Here one can see that, as the probability of a buffer failure approaches
zero, the expected cost of providing a buffer becomes constant. This finding
is consistent with my observation that a buffer is designed to absorb the
same risk regardless of size.

6.4 The cost of capital for stable value shareholders and the
capital buffer

Given an estimate of yB, I can then estimate the cost of capital for the
A and B shares by calculating the discount rate that respectively sets
the present values of the expected payoffs under the physical distribution
equal to the respective market prices of the A and B shares, i.e., $1.00 =
EP (AT (yB))e−kAT ) and B0 = EP (BT (yB))e−kBT ).
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Since the results across Panels A through E of Table 6 are qualitatively
similar, I use Panel A to describe a number of the salient features of my
analysis. The first is that the stable value A shares, which have been struc-
tured to provide payoffs that replicate amortized cost net of a payment to
the capital buffer to compensate for default risk, have a cost of capital (kA)
that is very similar to the cost of capital associated with a default-free secu-
rity. Since I assume that the capital buffer contributes the same securities as
those in the MMF, the overall cost of capital for the MMF plus the buffer is
the same as the stand-alone MMF fund. The reason that the cost of capital
for the capital buffer shares (kB) is higher than the A shares is that they
reflect a risk premium for absorbing default risk from the A shares.

Since the amount of default risk a capital buffer attempts to absorb is
the same regardless of the size of the buffer, smaller buffers have higher costs
of capital to reflect the higher leverage levels. Although the cost of capital
kB declines monotonically with buffer size, the Buffer Cost does not follow
suit. This is because, small buffers, of say 10 b.p.s, fail at high enough
rates that they do not insulate A shares from default and force them to
absorb nontrivial levels of risk that may cause them to fail, even if the only
hold default-free securities. As buffer levels increase to the point where the
probability of a buffer failure approaches zero, the Buffer Cost does not
change even though the promised yields and their associated costs of capital
do. The standard deviation columns also demonstrate that the standard
deviation of the realized returns to A shares is very stable across buffer
levels. By contrast, the standard deviation of the returns to B shares are
significantly higher. They also naturally decrease as the size of the capital
buffer grows.

Panel E reports results for a portfolio of default-free securities. There
are a number of results that warrant discussion. The first is that the cost of
buffer capital exceeds the cost of capital for A shares by a significant amount
for small buffer levels. For example, kB = 5.3127% and kA = 0.9111% for
a 10 b.p. buffer. The second point is that, as the capital buffer increases
in size, kB approaches kA. By contrast, kB for portfolios of risky securities
always reflects a premium for default risk (kB = 1.2268% > kA = 0.9080%
for a 300 b.p. buffer).

Table 7 provides summary statistics for buffer failure rates. It reports the
expected time to first failure and the corresponding probability of a buffer
failure. The analysis indicates that a fund could protect itself from failure
for buffer levels greater than 60 basis points under the current regulatory
baseline.
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6.5 Concentration and Defaults

The results of my simulation analysis are determined, in part, by the port-
folio construction algorithm. This algorithm calculates the number of zero-
coupon bonds that are needed to achieve a target duration (see Section
4.1). For example, the simulation analysis used to create Table 9 is based
on a portfolio with a 60-day duration. The algorithm determined that an
equally-weighted portfolio requires 122 bonds with consecutive daily matu-
rities ranging from 1 to 122 days.

The choice of portfolio weights is relevant because funds are permitted
to hold concentrated positions of up to 5% in individual securities. Since the
failure of a single concentrated position could result in significant investor
losses, it is important, therefore, to better understand how concentration
levels affect portfolio default rates.18

I evaluate the impact of portfolio diversification by comparing default
“shocks” of the same economic magnitude. To do this, I calculate the num-
ber of bonds that would need to default on the same day to cause a loss
of X%. Under the maintained assumption that a portfolio is comprised of
N equally-weighted securities, an X% default shock can be represented as
the probability that no more than K bonds default on a given day where
X = floor

(
K
N

)
. For the case of a 5% default, a portfolio comprised of 20 po-

sitions would only need one bond to default. By contrast, a well-diversified
portfolio that holds 120 securities would require 6 securities to default on
the same day.

The probability that no more than K bonds default on a given day t
for a portfolio containing N bonds is computed as

p̂t (K) =
K∑
k=0

pt (t, t+ 1)N−k (1− pt (t, t+ 1))k
N !

(N − k)!k!
(35)

where pt (t, t+ 1) is the probability of survival from time t to t + 1. The
one-day survival probability (see Equation (8)) equals:

p (t, t+ 1) = eᾱλ(1)+β̄λ(1)λt . (36)

For calculation purposes,both ᾱλ (1) and β̄λ (1) are computed using the es-
timated parameters for the physical intensity process. The probability that
more than K bonds default on any given day t over an investment horizon

18Note that such an event would cause the fund to break the buck if the recovery rate
is less 90%.
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of T days is

Pt (K) = 1− EPt

[
T∏
τ=1

p̂τ (K;λτ )

]
(37)

Using the simulated intensity rates, a Monte Carlo estimate of Pt (K) is
calculated as

P̄t (K) = 1−
J∑
j=1

T∏
τ=1

p̂τ (K;λτj) /J (38)

where λτj is the simulated intensity rate on date τ for simulation run j.
Table 8 reports the probability of experiencing more than K defaults

on a given day at some point over a 360-day investment horizon for six
different portfolio formation strategies. Portfolio P1 contains 20 securities
and can be viewed as a maximally concentrated portfolio. In this portfolio,
each security represents 5% of the fund’s shadow price. The results for
this portfolio represent an upper bound on default probabilities. Portfolios
P2 through P6 represent funds that have progressively higher diversification
levels. These portfolios are respectively comprised of 40, 60, 80, 100, and 120
securities. Portfolio P6 is of particular interest because it has approximately
the same level of diversification as the portfolio that is used throughout this
paper.

The first row of Table 8 indicates that the probability of more than one
default is rather low and that the rate monotonically declines as portfolios
become more diversified. The highlighted amounts in each column reflect
the probability of experiencing a common 5% default shock on at least one
day over the 360-day holding period. The highlighted amounts show that
the probability of a 5% default shock ranges from 1.380084% to 0.000001%.
The relatively high default rate for the maximally concentrated Portfolio
P1 declines rapidly as portfolios become more diversified. For example,
Portfolio P2 only has a 0.046205% chance of a 5% economic shock.

Paradoxically, the expected returns across portfolios P1 through P6 are
very similar. This simply reflects the fact that less diversified have a rel-
atively small number of large shocks, while the more diversified portfolios
experience a relatively high number of small shocks. On net, since they are
exposed to the same aggregate level of credit risk, they earn similar returns.

Since funds tend to hold a relatively small number of concentrated po-
sitions, the assumption that a fund holds twenty maximally concentrated
positions is unrealistic. As a consequence, my estimate of the upper bound
on default rates can be tightened considerably by basing these estimates
on the empirical distribution of actual MMF holdings. Using monthly data
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provided to the U.S. Securities Commission on Form N-MFP submissions,
Table 9 reports the number of MMFs that hold positions with economic ex-
posure to the issuer’s parent company that exceed specified thresholds over
the period November 2010 through November 2012.19

Table 9 reports results for the 592 money market funds that submitted
data to the SEC at some point during November 2010 to November 2012
period. Consider the column labeled 5%. This column provides the distri-
bution of the average number of assets per fund with at least a 5% exposure
level. The first row shows that 122 of the 529 funds never held a security
over the 25 month estimation period that had at least a 5% exposure to a
single parent. This implies that 76.9% of the funds actually had significant
exposure to at least one issuer. The tenth row indicates that, on average,
7 funds held between 5 and 6 securities with at least a 5% exposure. One
also can see that no fund maintained 5% exposure levels for more than 6 se-
curities. That is, no money market funds reported maximally concentrated
positions that exceeded 30.0% of the assets under management.

Based on this empirical distribution, I estimate the probability of an
economic shock that results in a loss of X% of a fund’s shadow price on any
given day over a 360-day investment horizon. These estimates are based on
portfolios that hold ten maximally concentrated positions and N equally-
weighted positions where N = 20, 40, 60, 80, 100, and 120 securities. Given
that no fund held more than 6 concentrated positions, this represents a
conservative bias for measuring exposure to concentrated positions. One can
then interpret the results of Table 9 as generating an empirically motivated
least upper bound.

Table 10 reports my estimates of default probabilities for different eco-
nomic shocks. Each row represents the probability of an economic shock
that falls within the indicated range. For example, the first row represents
the probability of an economic shock of between 0.0% and 2.5%. It is in-
teresting to note that the probability of a 5.0% shock for the maximally
concentrated portfolios P1 drops from 1.3801% (Table 8) to 0.0099%.

Taken as a whole, these results suggest that the assumptions underlying
the portfolio formation algorithm do not materially affect the implications
of my analysis. They do show that large losses are more likely if a fund has
concentrated positions, but that the marginal increase in the probability of
default is not economically significant.

19Since I am interested in examining default risk as it primarily relates to corporate
issuers, the analysis excludes variable rate demand notes, other municipal debt, Trea-
sury repurchase agreements, government repurchase agreements, asset backed commercial
paper with a guarantee or demand feature, and public debt.
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7 Conclusion

The topic of money market regulation is the subject of much debate. The
objective of this paper is to illustrate the economic effects of requiring a
money market fund to be supported by a capital buffer. To put my findings
into context, it is important to understand that a capital buffer can be
designed to satisfy different potential objectives.

One possible objective is to design a buffer so that it is able absorb day-
to-day variations in market value relative to the amortized cost of the under-
lying portfolio assets. My examination of this design strategy demonstrates
that a 60 basis point buffer would be sufficient to provide price stability
under normal market conditions. Although a 60 basis point buffer is able
to withstand most day-to-day price variation, it would most likely fail if a
concentrated position, of say 5%, were to default.

A larger buffer could protect shareholders from losses related to defaults
in concentrated positions, such as the one experienced by the Reserve Pri-
mary Fund following the Lehman Brothers bankruptcy. However, if com-
plete loss absorption is the objective, a substantial buffer would be required.
For example, a 3% buffer would accommodate all but extremely large losses.
A limitation of a large buffer is that the cost of providing this protection
would be borne at all times even though it is likely to be significantly de-
pleted only rarely.

While a capital buffer would make a money market fund more resilient
to deviations between the shadow price and amortized cost, it may be a
costly mechanism from the perspective of the opportunity cost of capital.
Those contributing to the buffer deploy valuable scarce resources that could
be used elsewhere. Moreover, because the capital buffer absorbs fluctuations
in the value of the portfolio, much of the yield of the fund will be diverted
to funding the capital buffer, which, in turn, will reduce fund yield. Put
another way, to the extent that the capital buffer absorbs default risk, those
contributing to a capital buffer will demand a rate of return that compen-
sates them for bearing this risk. Since, by construction, a capital buffer
absorbs defaults until it is fully depleted, money market funds will allocate
that portion of the returns associated with credit risk to capital buffer “in-
vestors” and only will be able to offer MMF shareholders returns that mimic
those available for government securities. This effectively converts MMFs
into “synthetic” Treasury funds.

My findings may have broader implications for capital formation. Many
investors are attracted to money market funds because they provide stabil-
ity but offer higher rates of return than government securities. Since these
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higher rates of return are intended to compensate for exposure to credit risk
and to the extent that fund managers are unable to pass through enhanced
yields to MMF shareholders, fund managers may be less willing to invest
in risky securities such as commercial paper or short-term municipal securi-
ties, particularly if these securities increase the probability that a buffer is
depleted. An inability to materially differentiate fund performance on the
basis of yield would significantly reduce, but not necessarily eliminate, the
utility of money market funds to investors.
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Table 1: Summary statistics for yields of U.S. treasuries, AA-rated financial
commercial paper, and the credit spread between AA-rated financial com-
mercial paper and maturity-matched U.S. Treasury yields over the period
January 2000 through January 2012.

Standard
Maturity Mean Median Deviation Minimum Maximum

(%) (%) (%) (%) (%)

Panel A. U.S. Treasury yields

30-Day 1.7451 1.21 1.6991 -0.01 5.27
90-Day 1.8221 1.29 1.7245 0.00 5.19
120-Day 1.9610 1.54 1.7512 0.02 5.33
360-Day 2.0873 1.68 1.6782 0.08 5.30
720-Day 2.3674 2.04 1.5231 0.16 5.29

Panel B. AA-rated financial commercial paper

30-Day 2.0398 1.54 1.8076 0.02 5.42
90-Day 2.0902 1.63 1.8059 0.05 5.38
120-Day 2.1453 1.68 1.8057 0.11 5.48

Panel C. Maturity-matched credit spread

30-Day 0.2947 0.13 0.4353 -0.07 3.84
90-Day 0.3451 0.17 0.4626 -0.05 3.52
120-Day 0.3232 0.15 0.4579 -0.02 3.73
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Table 2: Kalman filter estimates of the spot interest rate and intensity
rate processes. Panel A reports the parameter estimates for the spot rate
of interest process ; Panel B reports parameter estimates for the intensity
rate process. The parameter estimates for the physical distribution and
their associated standard errors are reported in columns (1) and (2). The
corresponding t-statistic are reported in column (3). The risk-neutralized
parameters implied by the physical distribution are reported in column (4).

Physical Risk-Neutral
Distribution Standard Distribution

Parameter Estimate Error t-statistic Estimate

Panel A. Parameter estimates for the spot interest rate process, rt

θr 0.0087 0.0047 1.8511 0.0119
κr 1.3894 0.1706 8.1442 1.0146
σr 0.0807 0.0123 6.5610 0.0807
ηr -0.3748 0.1478 -2.5359

Observations 3,066

Panel B. Parameter estimates for the spot intensity rate process, λt

θc 0.0013 5.76E-06 34.7331 0.0072
κc 1.7632 0.0572 30.8876 0.3178
σc 0.0372 0.0024 15.5367 0.0372
ηc -1.4454 0.0409 -35.356

Observations 3,066
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Table 3: Summary statistics for 360-day buy-and-hold returns for portfolios
with 60-day durations based on a Monte Carlo simulation Panels A and B
respectively report results for returns based on amortized cost (AC) and
shadow price (SP ). The simulation is based on 2,500 draws.

Proportion of fund invested in default-free securities

Description 0.00 0.25 0.50 0.75 1.00

Panel A. 360-day buy-and-hold AC returns for a fund with a 60-day duration

Mean 0.9410 0.9290 0.9203 0.9149 0.9126
Standard Deviation 0.2701 0.2650 0.2631 0.2626 0.2626
Minimum 0.3489 0.3738 0.3862 0.3869 0.3874
1-percentile 0.4884 0.4884 0.4816 0.4730 0.4687
25-percentile 0.7424 0.7337 0.7283 0.7240 0.7206
Median 0.9039 0.8925 0.8830 0.8787 0.8765
75-percentile 1.0958 1.0809 1.0714 1.0648 1.0627
99-percentile 1.7411 1.7146 1.7055 1.7085 1.7073
Maximum 2.2935 2.2278 2.1828 2.1772 2.1716

Panel B. 360-day buy-and-hold SP returns for a fund with a 60-day duration

Mean 0.9180 0.9176 0.9171 0.9167 0.9162
Standard Deviation 0.2822 0.2816 0.2813 0.2811 0.2811
Minimum 0.3248 0.3421 0.3454 0.3481 0.3508
1-percentile 0.4370 0.4398 0.4381 0.4407 0.4414
25-percentile 0.7171 0.7153 0.7167 0.7141 0.7143
Median 0.8797 0.8795 0.8794 0.8798 0.8797
75-percentile 1.0816 1.0794 1.0785 1.0780 1.0752
99-percentile 1.7727 1.7724 1.7747 1.7740 1.7739
Maximum 2.2902 2.2845 2.2789 2.2732 2.2676
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Table 4: Summary statistics for the daily asset valuation ratio of AC to
SP based on a Monte Carlo simulation. Panels A and B respectively report
results for portfolios with durations of 60 and 90 days. The simulation is
based on 2,500 draws.

Proportion of fund invested in default-free securities

Description 0.00 0.25 0.50 0.75 1.00

Panel A. 360-day AC to SP ratio for a fund with a 60-day duration

Mean 1.0001 1.0001 1.0000 1.0000 1.0000
Standard Deviation 0.0007 0.0005 0.0004 0.0004 0.0004
Minimum 0.9979 0.9979 0.9979 0.9979 0.9979
1-percentile 0.9990 0.9990 0.9990 0.9990 0.9990
25-percentile 0.9998 0.9998 0.9998 0.9997 0.9997
Median 1.0000 1.0000 1.0000 1.0000 1.0000
75-percentile 1.0003 1.0003 1.0003 1.0002 1.0002
99-percentile 1.0027 1.0016 1.0010 1.0009 1.0008
Maximum 1.0060 1.0037 1.0022 1.0020 1.0020
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Table 5: Analysis of the spreads between the shadow price and amortized
cost. Panel A reports the first passage time to x-basis point thresholds, and
Panel B reports the frequency that a money market fund falls below specific
x-basis point thresholds. Portfolio duration is 60 days and the period of
analysis is 360 days. The simulation is based on 2,500 draws.

Proportion of fund invested in default-free securities

Basis Points 0.00 0.25 0.50 0.75 1.00

Panel A. First passage time

0.05 183.962 195.804 204.734 218.446 222.758
0.10 308.801 315.534 334.495 343.052 344.375
0.15 329.526 345.578 357.256 358.958 359.061
0.20 336.400 355.520 359.790 360.000 360.000
0.25 351.487 358.824 360.000 360.000 360.000
0.30 355.956 359.698 360.000 360.000 360.000
0.35 356.400 359.846 360.000 360.000 360.000
0.40 358.423 360.000 360.000 360.000 360.000
0.45 359.558 360.000 360.000 360.000 360.000
0.50 359.653 360.000 360.000 360.000 360.000

Panel B. Frequency that threshold is reached

0.05 71.520 68.320 66.200 61.880 60.240
0.10 25.240 22.640 15.320 10.640 9.600
0.15 14.160 8.040 1.920 0.720 0.640
0.20 11.160 2.560 0.160 0.000 0.000
0.25 4.880 0.800 0.000 0.000 0.000
0.30 2.160 0.240 0.000 0.000 0.000
0.35 1.880 0.080 0.000 0.000 0.000
0.40 0.920 0.000 0.000 0.000 0.000
0.45 0.320 0.000 0.000 0.000 0.000
0.50 0.240 0.000 0.000 0.000 0.000
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Table 6: Estimates of the promised yield to the capital buffer and summary
statistics for the associated costs of capital to stable value shares, the capital
buffer, and the underlying money market fund at different capital buffer
levels and for different proportions of default-free and risky securities.

Panel A: φ = 0.00, kMMF = 0.9180%, σMMF = 0.2812%.

Buffer Promised Buffer Cost of Capital Standard deviation

Level Yield Cost A B A B
(b.p.) (%) (b.p.) (%) (%) (%) (%)

10 31.1408 2.8848 0.9077 10.5160 0.2753 67.1790
20 18.3257 3.6122 0.9080 5.5465 0.2738 43.1400
30 11.4117 3.5699 0.9081 3.9721 0.2717 26.7174
40 8.7399 3.6445 0.9078 3.2878 0.2712 20.1006
50 7.0500 3.6464 0.9080 2.7800 0.2714 16.2830
60 5.9005 3.6454 0.9080 2.4591 0.2714 13.5991
70 5.0841 3.6509 0.9080 2.2451 0.2714 11.6657
80 4.4615 3.6500 0.9080 2.0781 0.2714 10.2189
90 3.9755 3.6500 0.9080 1.9491 0.2714 9.0937
100 3.5850 3.6500 0.9080 1.8459 0.2714 8.1936
200 1.8086 3.6500 0.9080 1.3816 0.2714 4.1456
300 1.2093 3.6500 0.9080 1.2268 0.2714 2.7991
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Panel B: φ = 0.25, kMMF = 0.9176%, σMMF = 0.2816%

Buffer Promised Buffer Cost of Capital Standard deviation

Level Yield Cost A B A B
(b.p.) (%) (b.p.) (%) (%) (%) (%)

10 28.6490 3.3174 0.9073 10.4935 0.2754 63.8390
20 13.4731 2.8846 0.9092 4.7098 0.2697 34.4628
30 8.6422 2.7080 0.9100 3.1962 0.2687 22.5764
40 6.4955 2.6844 0.9101 2.6005 0.2687 16.8597
50 5.2301 2.6846 0.9101 2.2659 0.2687 13.4972
60 4.3836 2.6887 0.9100 2.0478 0.2687 11.2645
70 3.7666 2.6869 0.9101 1.8837 0.2687 9.6698
80 3.3035 2.6869 0.9101 1.7628 0.2687 8.4740
90 2.9418 2.6869 0.9101 1.6688 0.2687 7.5440
100 2.6514 2.6869 0.9101 1.5936 0.2687 6.8001
110 2.4133 2.6869 0.9101 1.5321 0.2687 6.1916
120 2.2144 2.6869 0.9101 1.4808 0.2687 5.6846
130 2.0458 2.6869 0.9101 1.4375 0.2687 5.2556
140 1.9010 2.6869 0.9101 1.4003 0.2687 4.8880
150 1.7754 2.6869 0.9101 1.3680 0.2687 4.5695
160 1.6654 2.6869 0.9101 1.3398 0.2687 4.2908
170 1.5682 2.6869 0.9101 1.3150 0.2687 4.0450
180 1.4817 2.6869 0.9101 1.2928 0.2687 3.8266
190 1.4043 2.6869 0.9101 1.2730 0.2687 3.6312
200 1.3345 2.6869 0.9101 1.2552 0.2687 3.4554
210 1.2714 2.6869 0.9101 1.2391 0.2687 3.2964
220 1.2139 2.6869 0.9101 1.2245 0.2687 3.1519
230 1.1614 2.6869 0.9101 1.2111 0.2687 3.0200
240 1.1133 2.6869 0.9101 1.1988 0.2687 2.8991
250 1.0690 2.6869 0.9101 1.1876 0.2687 2.7879
260 1.0281 2.6869 0.9101 1.1771 0.2687 2.6854
270 0.9902 2.6869 0.9101 1.1675 0.2687 2.5904
280 0.9550 2.6869 0.9101 1.1585 0.2687 2.5023
290 0.9223 2.6869 0.9101 1.1502 0.2687 2.4203
300 0.8916 2.6869 0.9101 1.1424 0.2687 2.3437

45



Panel C: φ = 0.50, kMMF = 0.9171%, σMMF = 0.2813%

Buffer Promised Buffer Cost of Capital Standard deviation

Level Yield Cost A B A B
(b.p.) (%) (b.p.) (%) (%) (%) (%)

10 25.4151 2.8937 0.9083 8.9973 0.2745 60.5203
20 9.0015 1.8838 0.9115 3.3513 0.2674 27.8496
30 5.8315 1.8015 0.9118 2.4503 0.2667 18.1373
40 4.3980 1.7985 0.9118 2.0626 0.2667 13.6143
50 3.5305 1.7968 0.9118 1.8300 0.2667 10.9149
60 2.9507 1.7968 0.9118 1.6777 0.2667 9.1155
70 2.5345 1.7968 0.9118 1.5690 0.2667 7.8304
80 2.2211 1.7968 0.9118 1.4874 0.2667 6.8667
90 1.9768 1.7968 0.9118 1.4239 0.2667 6.1173
100 1.7808 1.7968 0.9118 1.3732 0.2667 5.5179
110 1.6203 1.7968 0.9118 1.3317 0.2667 5.0275
120 1.4862 1.7968 0.9118 1.2971 0.2667 4.6190
130 1.3727 1.7968 0.9118 1.2678 0.2667 4.2735
140 1.2753 1.7968 0.9118 1.2427 0.2667 3.9774
150 1.1907 1.7968 0.9118 1.2209 0.2667 3.7208
160 1.1167 1.7968 0.9118 1.2019 0.2667 3.4964
170 1.0514 1.7968 0.9118 1.1851 0.2667 3.2985
180 0.9933 1.7968 0.9118 1.1702 0.2667 3.1226
190 0.9412 1.7968 0.9118 1.1568 0.2667 2.9652
200 0.8944 1.7968 0.9118 1.1448 0.2667 2.8237
210 0.8520 1.7968 0.9118 1.1339 0.2667 2.6957
220 0.8134 1.7968 0.9118 1.1240 0.2667 2.5794
230 0.7782 1.7968 0.9118 1.1150 0.2667 2.4733
240 0.7459 1.7968 0.9118 1.1067 0.2667 2.3760
250 0.7161 1.7968 0.9118 1.0991 0.2667 2.2866
260 0.6887 1.7968 0.9118 1.0921 0.2667 2.2040
270 0.6633 1.7968 0.9118 1.0856 0.2667 2.1277
280 0.6397 1.7968 0.9118 1.0795 0.2667 2.0568
290 0.6177 1.7968 0.9118 1.0739 0.2667 1.9908
300 0.5971 1.7968 0.9118 1.0686 0.2667 1.9293
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Panel D: φ = 0.75, kMMF = 0.9167%, σMMF = 0.2811%

Buffer Promised Buffer Cost of Capital Standard deviation

Level Yield Cost A B A B
(b.p.) (%) (b.p.) (%) (%) (%) (%)

10 19.3591 2.1360 0.9095 7.3041 0.2727 54.2648
20 4.5094 0.9225 0.9135 2.1503 0.2656 22.3251
30 2.9783 0.9069 0.9136 1.7059 0.2655 14.8578
40 2.2420 0.9069 0.9136 1.5084 0.2655 11.1774
50 1.7976 0.9069 0.9136 1.3899 0.2655 8.9694
60 1.5002 0.9069 0.9136 1.3109 0.2655 7.4976
70 1.2873 0.9069 0.9136 1.2545 0.2655 6.4465
80 1.1273 0.9069 0.9136 1.2122 0.2655 5.6584
90 1.0027 0.9069 0.9136 1.1792 0.2655 5.0456
100 0.9028 0.9069 0.9136 1.1529 0.2655 4.5554
110 0.8211 0.9069 0.9136 1.1314 0.2655 4.1545
120 0.7529 0.9069 0.9136 1.1134 0.2655 3.8205
130 0.6952 0.9069 0.9136 1.0982 0.2655 3.5380
140 0.6457 0.9069 0.9136 1.0852 0.2655 3.2960
150 0.6028 0.9069 0.9136 1.0739 0.2655 3.0863
160 0.5652 0.9069 0.9136 1.0640 0.2655 2.9029
170 0.5321 0.9069 0.9136 1.0553 0.2655 2.7411
180 0.5026 0.9069 0.9136 1.0476 0.2655 2.5974
190 0.4762 0.9069 0.9136 1.0407 0.2655 2.4689
200 0.4524 0.9069 0.9136 1.0344 0.2655 2.3532
210 0.4309 0.9069 0.9136 1.0288 0.2655 2.2487
220 0.4114 0.9069 0.9136 1.0236 0.2655 2.1537
230 0.3935 0.9069 0.9136 1.0190 0.2655 2.0670
240 0.3772 0.9069 0.9136 1.0147 0.2655 1.9876
250 0.3621 0.9069 0.9136 1.0107 0.2655 1.9146
260 0.3482 0.9069 0.9136 1.0071 0.2655 1.8473
270 0.3353 0.9069 0.9136 1.0037 0.2655 1.7849
280 0.3234 0.9069 0.9136 1.0006 0.2655 1.7271
290 0.3122 0.9069 0.9136 0.9976 0.2655 1.6733
300 0.3019 0.9069 0.9136 0.9949 0.2655 1.6231
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Panel E: φ = 1.00, kMMF = 0.9162%, σMMF = 0.2811%

Buffer Promised Buffer Cost of Capital Standard deviation

Level Yield Cost A B A B
(b.p.) (%) (b.p.) (%) (%) (%) (%)

10 11.0242 1.1655 0.9111 5.3127 0.2722 49.1956
20 0.1065 0.0213 0.9153 1.0221 0.2653 20.1061
30 0.0577 0.0173 0.9153 0.9732 0.2653 13.4526
40 0.0433 0.0173 0.9153 0.9588 0.2653 10.1263
50 0.0346 0.0173 0.9153 0.9501 0.2653 8.1308
60 0.0289 0.0173 0.9153 0.9444 0.2653 6.8007
70 0.0247 0.0173 0.9153 0.9402 0.2653 5.8508
80 0.0217 0.0173 0.9153 0.9371 0.2653 5.1385
90 0.0193 0.0173 0.9153 0.9347 0.2653 4.5847
100 0.0173 0.0173 0.9153 0.9328 0.2653 4.1418
110 0.0158 0.0173 0.9153 0.9312 0.2653 3.7796
120 0.0144 0.0173 0.9153 0.9299 0.2653 3.4778
130 0.0133 0.0173 0.9153 0.9288 0.2653 3.2225
140 0.0124 0.0173 0.9153 0.9279 0.2653 3.0039
150 0.0116 0.0173 0.9153 0.9270 0.2653 2.8144
160 0.0108 0.0173 0.9153 0.9263 0.2653 2.6487
170 0.0102 0.0173 0.9153 0.9257 0.2653 2.5026
180 0.0096 0.0173 0.9153 0.9251 0.2653 2.3728
190 0.0091 0.0173 0.9153 0.9246 0.2653 2.2567
200 0.0087 0.0173 0.9153 0.9241 0.2653 2.1523
210 0.0083 0.0173 0.9153 0.9237 0.2653 2.0579
220 0.0079 0.0173 0.9153 0.9234 0.2653 1.9721
230 0.0075 0.0173 0.9153 0.9230 0.2653 1.8938
240 0.0072 0.0173 0.9153 0.9227 0.2653 1.8221
250 0.0069 0.0173 0.9153 0.9224 0.2653 1.7562
260 0.0067 0.0173 0.9153 0.9221 0.2653 1.6954
270 0.0064 0.0173 0.9153 0.9219 0.2653 1.6392
280 0.0062 0.0173 0.9153 0.9217 0.2653 1.5870
290 0.0060 0.0173 0.9153 0.9215 0.2653 1.5384
300 0.0058 0.0173 0.9153 0.9213 0.2653 1.4931

48



T
ab

le
7
:

E
st

im
a
te

s
of

th
e

m
ea

n
fi

rs
t

p
as

sa
ge

ti
m

e
to

a
b

u
ff

er
fa

il
u

re
an

d
th

e
p

ro
p

or
ti

o
n

of
ti

m
es

a
ca

p
it

a
l

b
u

ff
er

fa
il

s
ov

er
a

36
0

d
ay

p
er

io
d

th
e

u
n

d
er

ly
in

g
m

on
ey

m
ar

ke
t

fu
n

d
at

d
iff

er
en

t
ca

p
it

al
b

u
ff

er
le

ve
ls

a
n

d
fo

r
d

iff
er

en
t

p
ro

p
o
rt

io
n

s
o
f

d
ef

au
lt

-f
re

e
a
n

d
ri

sk
y

se
cu

ri
ti

es
.

D
u

ra
ti

on
=

60
d

ay
s,

th
e

re
co

ve
ry

ra
te

=
4
0%

,
a
n
d

th
e

vo
la

ti
li

ty
le

ve
ls

a
re

a
t

th
ei

r
es

ti
m

at
ed

va
lu

es
.

φ
=

0.
00

φ
=

0.
25

φ
=

0.
5
0

φ
=

0.
7
5

φ
=

1.
0
0

T
im

e
to

F
ai

lu
re

T
im

e
to

F
ai

lu
re

T
im

e
to

F
a
il

u
re

T
im

e
to

F
ai

lu
re

T
im

e
to

F
a
il

u
re

B
u

ff
er

F
ai

l
R

at
e

F
ai

l
R

at
e

F
a
il

R
a
te

F
a
il

R
a
te

F
a
il

R
a
te

(b
.p

.)
(D

ay
s)

(%
)

(D
ay

s)
(%

)
(D

ay
s)

(%
)

(D
ay

s)
(%

)
(D

ay
s)

(%
)

5
21

4.
24

52
.6

00
22

2.
93

50
.6

00
2
2
9
.4

6
4
9
.0

8
0

2
3
5
.4

0
4
7.

4
8
0

2
4
4
.0

9
4
4
.7

6
0

10
31

3.
39

20
.1

20
31

7.
27

18
.6

8
0

3
2
4
.8

1
1
6
.0

8
0

3
3
8
.9

3
1
1
.4

8
0

3
4
4
.3

0
8
.6

8
0

15
32

7.
18

14
.1

20
33

4.
16

11
.4

4
0

3
4
9
.8

3
5
.3

2
0

3
5
7
.5

3
1
.4

4
0

3
5
8
.6

6
0
.8

0
0

20
33

5.
64

10
.4

40
35

1.
80

4.
12

0
3
5
7
.8

4
1
.3

2
0

3
5
9
.9

0
0
.1

2
0

3
6
0
.0

0
0
.0

0
0

25
35

2.
08

3.
80

0
35

7.
04

1.
76

0
3
5
9
.8

1
0
.2

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

30
35

6.
92

1.
84

0
35

8.
87

0.
64

0
3
5
9
.9

6
0
.0

4
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

35
35

7.
46

1.
60

0
35

9.
81

0.
20

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

40
35

9.
18

0.
48

0
35

9.
93

0.
08

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

45
35

9.
75

0.
24

0
36

0.
00

0.
00

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

50
35

9.
90

0.
12

0
36

0.
00

0.
00

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

55
35

9.
99

0.
04

0
36

0.
00

0.
00

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

60
36

0.
00

0.
00

0
36

0.
00

0.
00

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

65
36

0.
00

0.
00

0
36

0.
00

0.
00

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

70
36

0.
00

0.
00

0
36

0.
00

0.
00

0
3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

3
6
0
.0

0
0
.0

0
0

49



Table 8: Probability that no more than K bonds default on the same day
over a 360-day investment horizon for a equally-weighted portfolio contain-
ing N positions. Portfolios P1 through P6 respectively have equal-weighted
positions of 20, 40, 60, 8-, 100, and 120 securities. The amounts that are
highlighted with a bold font correspond to a default shock of 5.0%.

Probability of K defaults on any given day

Number Maximally Maximally
Defaults Concentrated Diversified

K P1 P2 P3 P4 P5 P6

0 98.608224 97.260752 95.925538 94.494261 93.424563 92.058393
1 1.380084 2.692405 3.970167 5.312826 6.300212 7.540331
2 0.011617 0.046205 0.102168 0.187469 0.265884 0.385001
3 0.000075 0.000631 0.002090 0.005309 0.009060 0.015700
4 0.000000 0.000007 0.000037 0.000131 0.000273 0.000557
5 0.000000 0.000000 0.000001 0.000003 0.000008 0.000018
6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 9: Empirical distribution of the number of money market funds that
hold positions with economic exposure to the issuer’s parent company that
exceed the indicated thresholds (0%. 1%, 3%, 5%, 7%, and 10%). Each col-
umn/row combination reports the number of funds that have the indicated
number of security positions (row indicator) with an economic exposure at
least as high as the threshold (column indicator). The information is derived
from Form N-MFP over the period November 2010 through November 2012.

Average Economic shock threshold %
Number of

Bonds per Fund 0% 1% 3% 5% 7% 10%

No exposure 529 529 529 529 529 529
( 0.00, 0.25 ] 529 516 491 407 311 177
( 0.25, 0.50 ] 529 507 468 331 183 90
( 0.50, 0.75 ] 529 502 440 273 134 57
( 0.75, 1.00 ] 529 488 415 232 106 38

( 1, 2 ] 416 396 332 149 51 9
( 2, 3 ] 362 348 266 75 14 5
( 3, 4 ] 340 325 243 36 5 2
( 4, 5 ] 327 301 227 16 2 1
( 5, 6 ] 315 289 201 7 0 0
( 6, 7 ] 309 270 177 0 0 0
( 7, 8 ] 299 263 155 0 0 0
( 8, 9 ] 291 258 137 0 0 0
( 9, 10 ] 284 257 115 0 0 0
( 10, 11 ] 276 253 93 0 0 0
( 11, 12 ] 273 245 68 0 0 0
( 12, 13 ] 263 241 49 0 0 0
( 13, 14 ] 254 235 38 0 0 0
( 14, 15 ] 251 232 24 0 0 0
( 15, 16 ] 242 219 17 0 0 0
( 16, 17 ] 237 208 10 0 0 0
( 17, 18 ] 229 196 5 0 0 0
( 18, 19 ] 223 185 4 0 0 0
( 19, 20 ] 217 176 1 0 0 0

> 20 213 158 0 0 0 0
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Table 10: Probability that a fund has a default that results in a loss of X%
of its shadow price on any given day over a 360-day investment horizon for a
portfolio comprised on ten maximally concentrated positions and N equally-
weighted positions. Portfolios P1 through P6 respectively have concentrated
positions in ten securities and equal-weighted positions of 20, 40, 60, 80,
100, and 120 securities. Portfolios P1 and P6 respectively represent the
maximally concentrated and diversified portfolios.

Probability of an economic shock of X%

Economic Maximally Maximally

Loss Concentrated Diversified

% P1 P2 P3 P4 P5 P6

[ 0.00, 2.50 ] 99.279770 99.306529 99.306056 99.301023 99.306085 99.305934
[ 2.50, 5.00 ) 0.707346 0.671845 0.663055 0.658437 0.645041 0.636419
[ 5.00, 7.50 ) 0.009943 0.018870 0.028159 0.037751 0.046113 0.054899
[ 7.50, 10.00 ) 0.002891 0.002672 0.002612 0.002630 0.002570 0.002522
[ 10.00, 12.50 ) 0.000040 0.000075 0.000111 0.000151 0.000184 0.000218
[ 12.50, 15.00 ) 0.000009 0.000008 0.000007 0.000008 0.000007 0.000007
[ 15.00, 17.50 ) 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001
[ 17.50, 20.00 ) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
≥ 20.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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