
Memorandum 
To: File 

From: The Division of Economic and Risk Analysis (DERA)1 

Date: November 16, 2017 

Re: Inferring Non-Transparent ETF Portfolio Holdings 

1 Specifying the reverse engineering problem 

This document discusses the technical aspects of the extent to which non-transparent ETF 
holdings can be reverse engineered. In this section, we introduce notation to precisely specify 
the problem and to better understand the regressions used in the various analyses discussed 
below. Consider a universe of i = 1, . . . , N stocks with mid-prices Pi

t at each time t = 
0, . . . , T within a trading day (t = 0 is the market open and t = T is the market close). 
If a fund owns ni shares of each stock as of the prior days close, its value at time t isPNP t = niPi

t . Precidian proposes to rescale this value periodically such that its initial F i=1 
price is approximately $20 at the start of each day (t = 0), producing a verified intra-day 
indicative value (VIIV) at each time t of PN NX20 niP t 20i=1 iV IIV t = · PF

t = 20 = wi Pi
t 

P 0 P 0 P 0 
F F ii=1 

where wi = niPi 
0/PF 

0 are the portfolio weights in each of the underlying assets at t = 0.2 

Without rounding, the portfolio weights wi can be exactly recovered from N observations of 
the scaled asset prices 20 P t and V IIVt as long as the asset prices are linearly independent. 

P 0 i 
i 

While stock price movements tend to be highly correlated, they are not perfectly linearly 
dependent, and in simulations of random portfolios we are able to solve this exact linear 
algebra problem without the need to use a statistical estimation technique such as ordinary 
least squares (OLS) regression. 

Precidian’s claim is that rounding the VIIV to the nearest penny prevents the portfolio 
weights wi from being reverse engineered. If we denote the rounded VIIV at time t as V IIV 

t 
, 

it can be expressed as 

NX 20 
V IIV t = V IIV t + (V IIV t − V IIV t) = wi P t + �t

P 0 i 
ii=1 

1This is a memorandum by the staff of the U.S. Securities and Exchange Commission. The Commission 
has expressed no view regarding the analysis, findings, or recommendations contained herein. 

t = 0 can equivalently represent the market close on the prior day, it does not change the analysis. 
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where �t = V IIV t − V IIV t is the rounding error.3 We are interested in the extent to which 
the weights wi or the number of shares ni can be reverse engineered by observing the rounded 
quantity V IIV t and the un-rounded mid-prices Pi

t . 

2 Existing Analyses 

Several relevant studies attempt to assess the extent to which portfolio holdings can be 
reverse engineered: 1) Staff from the Risk and Examination Office (REO) in the Division 
of Investment Management (IM) performed an initial analysis of whether weights could be 
reverse engineered; 1) Precidian responded to some initial feedback from IM on the issue with 
a study by Ricky Cooper that uses OLS regressions to claim that reverse engineering is not 
possible once the VIIV is scaled and rounded to the nearest penny; 2) Precidian submitted 
an additional study by Lawrence Glosten that uses a more complex estimation technique, 
(“LASSO” regression) and reaches a similar conclusion; 3) Blue Tractor recently submitted 
an analysis that shows holdings can be reverse engineered to a high degree of accuracy for 
a small universe of 100 stocks. In this section, we examine each of these analyses and their 
conclusions. 

2.1 REO analysis 

REO performed an analysis for several dates using the NASDAQ 100 as a universe from 
which to construct portfolios with true weights wi on each stock, where both long and short 
positions were allowed.4 They scale these portfolios to have an initial value of $20 on each 
trading day, and run regressions using both the full precision price and a rounded (to the 
penny) price. Using mid-prices observed at 10 second intervals, they run the regressions 

N NX X 
Rt βiRi

t + �t Rt βiRi
t + �t = = V IIV V IIV 

i=1 i=1 

fitting both the exact and rounded VIIV returns on the individual asset returns implied by 
the mid-price movements, where these returns are defined by 

V IIV t V IIV 
t 

P t 
Rt Rt iRt = = = V IIV V IIV t−1 i P t−1V IIV t−1 

iV IIV 

The estimated coefficients βi are intended to be portfolio weights, so they are constrained to PNsum to 1: i=1 βi = 1. 
Note that the expressions for the V IIV derived in the previous section uses the levels of 

the variables while this analysis uses returns. If the problem is specified in terms of returns, 

3Note that, technically, the standard regression assumption that the error is independent of the regressors 
doesn’t apply here: the error term is exclusively a function of the regressors, albeit a complicated one. 

4The code from this analysis formed the basis for the our additional simulations discussed in the next 
section. 
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it can be shown that the true relationship between returns on the VIIV portfolio and the 
returns of its constituents is 

N
niP t−1X 

Rt t−1Rt t−1 i = w w = V IIV i i i PN niP t−1 
i=1 i=1 i 

In other words, when returns are used, there is not a constant relationship between the 
VIIV return and the individual asset returns: it is based on the weights as of the end of the 
previous time period, and these weights fluctuate throughout the day. In practice, this means 
that estimating constant regression coefficients βi captures the average portfolio weights over 
the course of the day, which, if price fluctuations are random, is likely to result in estimates 
of the initial weights wi that are close to the estimates produced by using the price level 
specification in the previous section. Over multiple days, weight estimates based on returns 
will under-perform estimates based on price levels. 

2.2 Ricky Cooper’s Analysis 

For stocks in the NASDAQ 100, Cooper constructs random portfolios by selecting 40% of 
the universe to have non-zero weights and equally weighting across these stocks (so each has 
a weight of 0.025). He uses these “weights” as the number of shares in forming the fund 
price, i.e. 

NX 
P t wiP t = F i 

i=1 

In other words, the wi Cooper is estimating are not portfolio weights but rather the fractional 
number of shares held in each stock: the same number of shares is held in each stock, but 
the dollar amounts invested in each stock differ. The above price weighting implies that 
the unscaled portfolio values PF

t are on the order of $100. Cooper runs three regressions 
to estimate wi, each using a day of one-second observations, and repeats the analysis for 
44 dates. Results are measured using the aggregate mean square error (MSE) of the fitted 
weights relative to the true weights, which can be interpreted as the standard error of the 
fitted weights:5 

1. As a benchmark, before rounding and scaling, Cooper regresses the exact fund price 
on the exact asset prices: 

NX 
P t wiP t + �t = F i 

i=1 

The estimated weights closely match the constituents (the mean square error (MSE) 
between the true and estimated weights is 0).6 This result is expected: as mentioned 
above, with exact fund prices, the weights can be solved for exactly using only N 

5For T days, with N fitted regression weights ŵi,t on each day t, the MSE is given by q PT PN 
(ŵi,t − wi,t)2 

NT t=1 i=1
6He actually uses the last traded price on both the left and right hand sides instead of mid-prices, but 

this doesn’t make any difference in the exact case. 
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observations, and OLS regressions using T > N data points should achieve similar 
results. 

2. Cooper runs a similar regression with the exception that the fund price P F
t 
is rounded to 

the nearest penny, and obtains a reasonable fit: the MSE of his regression weights versus 
the true weights is 0.0012, which is an order of magnitude smaller than the average 
naive portfolio weight of 0.01 (there are 100 stocks and a naive portfolio assignment 
would choose equal weights for all stocks). 

3. Finally, Cooper scales the fund price so that its initial price is $20, and obtains an MSE 
of 0.0104, which is similar to the MSE of a naive equally weighted portfolio across all 
100 stocks (0.0122). Cooper claims that this demonstrates that, once the fund price is 
scaled to $20, one cannot do much better than picking a naive portfolio. However, the 
result is actually due to not fully accounting for the effects of scaling. Based on the 
above fund price PF

t in Cooper’s analysis, the scaled/rounded VIIV, similar to the one 
derived in the previous section, is 

NX t 20 
P tV IIV = wi i + �t

P 0 
Fi=1 

where �t is the rounding error. That means that, to recover the weights wi as closely 
20 P tas possible, the rounded and scaled VIIV should be regressed on scaled prices i .P 0 
F 

Because Cooper only regresses on the unscaled prices Pi
t, the best case scenario, under 

which the regression is estimated with no error, is that the estimates ŵi are related to 
the true weights by 

20 
ŵi = wi

P 0 
F 

If a similar error-free regression of the VIIV on properly scaled prices were run, the 
portfolio weights would be perfectly recovered ( ˆ = wi, MSE = 0). For Cooper’s wi 

setup, where M < N stocks are chosen from the universe and equally weighted, it can 
be shown that the best case MSE if the regression incorrectly uses unscaled prices is s � �2

20 1 20 
MSE(ŵi = wi) = − 1 

PF 
0 MN PF 

0 

Cooper claims that the unscaled ETF price PF 
0 is on the order of $100, and his setup has 

N = 100 and M = 40, implying an approximate best case MSE ≈ 0.0126 according 
to the above equation. This is the same order of magnitude as the MSE claimed by 
Cooper for the rounded and scaled VIIV: the effect of incorrectly handling scaling issues 
explains the change in magnitude of the MSE introduced in Cooper’s third regression. 

In sum, Cooper concludes that rounded (but unscaled) VIIV’s can be used to obtain a 
decent approximation of the portfolio constituents from a small, 100 stock universe. While 
scaling the VIIV does reduce the precision of this approximation, it does not eliminate it (as 
claimed by Cooper). More generally, with all of these studies, translating low MSE, high R2 , 
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or high correlation estimates of an ETF’s portfolio weights into a profitable trading strategy 
would require more explicit assumptions about a fund’s alpha generating process. It would 
not necessarily require the exact replication of a portfolio. For example, effectively inferring 
the ranking of the portfolio’s weights is potentially informative about which stocks an active 
ETF will be buying/selling. 

2.3 Lawrence Glosten’s Analysis 

Glosten’s analysis differs from Cooper’s in two key respects: 1) he uses a larger universe (the 
Russell 1000) from which to construct random portfolios using a randomly chosen subset 
of 130 stocks; 2) he primarily estimates portfolio weights using the “LASSO” regression 
technique instead of OLS. 

Glosten uses LASSO because it is a “sparse regression technique” that is designed for 
problems where weights on some of the variables are zero.7 OLS will also infer the correct 
weights with enough data, while LASSO makes a bias-variance trade-off: with limited data, 
LASSO may result in better prediction errors for the independent variable even though it 
introduces bias into coefficient estimates. However, for the purpose of reverse engineering an 
ETF’s portfolio holdings, small prediction errors are not the primary objective. While the 
sparse nature of the LASSO algorithm’s output makes intuitive sense in situations where a 
fund only invests in a subset of the stocks in its universe, it is not obvious a priori that it 
should outperform OLS. 

Glosten runs his analyses on portfolios constructed from a random number of shares 
scaled so that the fund price is in the $20 to $60 range, performing the LASSO regression 

NX t 
βiP tV IIV = i + �t 

i=1 

Because the regressors are not scaled, the regression produces estimates of the number of 
shares of each security held. While the regressions have high R2 values with respect to how 
well the model fits the VIIV to the mid-prices, the overlap between the names held in the 
estimated versus true portfolio is small. He also runs several OLS regressions as a benchmark 
and obtains similar results. 

Glosten’s study does not include details on how the LASSO algorithm was implemented, 
making replication of the results difficult. In our experience, LASSO algorithm results can 
vary with the software package used and various options related to how data is standardized 
before the model is estimated. Therefore, it is possible that other LASSO implementations 
could achieve more accurate estimates of portfolio holdings. Finally, Glosten’s finding that 
OLS and LASSO are unable to accurately recover portfolio holdings for a larger universe of 
available portfolio securities (the Russell 1000) does not rule out the possibility that other 
techniques might perform better on stock universes of the same size. 

7In addition to the typical least-squares-error objective of OLS, LASSO imposes a penalty on the sum of 
the absolute coefficient values, encouraging some of them to be zeroed out. 
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2.4 Blue Tractor’s Analysis 

Blue Tractor provided an analysis by Anthony Hayter to counter Precidian’s claim that the 
portfolio holdings of a non-transparent ETF cannot be reverse engineered. Hayter does not 
use actual pricing data: instead, he measures the correlation and volatility of 10 Nasdaq 
stocks, and uses a single “average” correlation value across the simulated stock universe. 
Hayter estimates the correct regression specification in levels (see Section 1), dividing by the 
initial value V IIV 0 = $20 to estimate 

t N
P tXV IIV 

= wi
i + �t

20 Pi 
0 

i=1 

Hayter forms equally-weighted portfolios from a randomly selected subset of 40% of a universe 
of 50 and 100 stocks, and simulates data in 15 second increments. Hayter uses a two-
pass approach: the above regression is estimated, any stocks with statistically insignificant 
coefficients are removed from the universe, and the regression is re-estimated. 

Using different measures of fit, Hayter shows that with 5 days of data, he can reverse 
engineer portfolios in this small universe to a very high degree of accuracy: his weights are 
only off by an average of 0.000776 relative to the true portfolio weight of 0.025, exhibit very 
few false-positives, and never exclude a stock that is in the true portfolio. With only one 
day of data and 15 second VIIV increments, the results are less accurate, but this is much 
less data than the one second increments that Precidian’s ETF structure would provide. On 
a larger universe with 1 second data, the results would probably lie somewhere in between 
these two extremes. The main caveat that applies to Hayter’s analysis is that the simulated 
data has a very simple correlation structure that may understate the difficulty involved in 
estimating the model from actual prices. Nonetheless, the two-pass aspect of his regression 
approach is an example of an alternative estimation technique that potentially improves 
upon the standard OLS and LASSO estimations above. 

3 DERA Simulations 

DERA performed additional simulations by extending code developed for the REO analysis 
described above using 10 second intervals. Random portfolios were generated using both 
equally weighted and randomly weighted subsets of a stock universe, for different size uni-
verses (the DOW 30, NASDAQ 100, S&P 500, and Russell 1000). As in the REO analysis, 
DERA initially worked with returns to the unrounded and rounded VIIV and regressed them 
on the returns implied by mid-prices, running the regressions 

N NX X 
Rt = βiRi

t + �t Rt = βiRi
t + �tV IIV V IIV 

i=1 i=1 

which means that the resulting estimates βi are an average of the weights over the course 
of the day. Any success in reverse-engineering the portfolio weights should therefore be 
considered a lower bound on what is possible. In practice, this approach is not much different 
than using the correct level specification in Section 1 for one-day of data, but it increasingly 
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under performs as the number of days used to estimate the model increases. The primary 
reason for using returns instead of price levels, despite this mis-specification, is that it was 
the only specification that worked reliably when applying the LASSO algorithm.8 

DERA’s results using both OLS and LASSO to estimate the above return specification: 

• Consistent with the above mathematical analysis, the portfolio weights are fully re-
covered when the VIIV is not rounded, regardless of whether OLS, LASSO, or linear 
algebra is used. This holds even when the universe size is large. 

• Once the VIIV is rounded, for both OLS and LASSO the effectiveness of reverse en-
gineering decreases as the size of the universe increases. Table 1 shows this trend 
using the cross-sectional R2, which measures how well the estimated model weights 
explain the true model weights. Table 3 shows the same trend using the Spearman 
rank-correlation of the true vs. estimated weights.9 

• For a given universe size, funds that invest in a larger fraction of the universe are harder 
to reverse engineer. Tables 2 and 4 demonstrate this, again using the cross-sectional 
R2 and Spearman rank-correlations of the true versus estimate weights. 

• While it’s hard to directly compare our 10 second LASSO results to Glosten’s one 
second results, Table 5 shows that, like his analysis, LASSO produces roughly the 
same number of false-positives as matches, so a given name in the estimated portfolio 
has an approximately 50% chance of being in the actual portfolio. This table does 
not capture the interaction of the magnitudes of the estimated versus true weights: 
some of the false-positive positions may be small and may not significantly alter other 
measures of fit like R2 or rank-correlation. 

• Both algorithms perform better with more observations relative to the universe size. 
These analyses used 10 second intervals, so we would expect all of the results to improve 
with higher frequency observations such as the one second VIIV observations that 
would be available under the proposed ETF structure. Table 6 demonstrates that if 
the number of observations is increased by a factor of 50 by using 50 days of data, and 
if the appropriate regression specification is used (in levels rather than returns), the 
precision of our weight estimates increases from an R2 of 7% to an R2 of 96.7%. We 
would expect this result to be analogous to using 5 days of 1 second data, assuming 
no turnover in the portfolio and assuming that intra-day variation in the mid-prices is 
comparable to the 10-day sample. 

8DERA used the LASSO implementation in the Python scikit-learn library. Many LASSO implemen-
tations perform better when input data are standardized, and return data naturally have this feature. When 
LASSO was used on price levels using the same library, even with various standardization parameters set to 
TRUE, the results were not valid weight estimates. This was the case even when the VIIV was not rounded 
to the nearest penny, which, as discussed above, should make it easy to recover the portfolio weights. 

9The Spearman rank correlation is sensitive to infinitesimal noise in estimating the weights. For example, 
even the exact OLS estimation will produce small non-zero weights for stocks that are not in the portfolio. 
Removing this estimation noise by setting insignificant weights to zero would make the rank correlation more 
comparable with the R2 . The rank correlation for the exact estimates in the first two columns of Table 3 
can be considered “best case” scenarios for the rank correlation when this noise is not filtered out. 
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The algorithms described above use some additional information about the problem to 
constrain estimates. For example, Cooper’s estimations impose the constraint that the 
weights wi sum to one. DERA was able to improve estimation results using the fact that 
each error term �t is a result of rounding to the nearest penny, so $ − 0.005 < �t < $0.005 for 
all t. By posing the least-squares problem as a quadratic program (QP-OLS), we estimate 
the correct level specification 

NX 20 
V IIV t = wi Pi

t + �t
P 0 
ii=1 

subject to the constraints that: 1) all weights are positive; 2) all weights sum to 1; 3) all 
solutions imply a maximum error of $0.005 at each observation t. This imposes an additional 
(2T + N + 1) constraints relative to the standard OLS algorithm, where N is the number of 
stocks and T is the number of observation. The results of using this technique include: 

• Table 7 shows that if the correct regression specification in levels is used, the QP-
OLS technique significantly outperforms standard OLS and, comparing with Table 1, 
LASSO. For example, using the S&P 500 as the stock universe, the average cross-
sectional R2 using LASSO is approximately 11% for variable-weight portfolios (Table 
1, column 4), while QP-OLS achieves an average R2 of approximately 47% (Table 7, 
column 4). 

• QP-OLS’s superior performance is even more apparent for multiple days of data. For 
the S&P 500 universe and random positive weights, Table 8 shows that QP-OLS can 
achieve the same degree of accuracy in 5 days of data as achieved by standard OLS in 
50 days of data (shown in Table 6), and achieves an R2 of 0.996 after 10 days. Table 
9 shows that, even for the Russell 1000, QP-OLS achieves a cross-sectional R2 of 94% 
using 10 days of 10 second data. We expect that our results with 10 days of data 
are similar to what could be achieved using 1 day of 1 second data, assuming that 
intra-day variation in the mid-prices is comparable to the 10-day sample. 
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Dow 30
Mean Std Mean Std Mean Std Mean Std

Var Pos 1.000 0.000 1.000 0.000 0.923 0.022 0.969 0.016
Equal 1.000 0.000 1.000 0.000 0.896 0.028 0.951 0.025

Naq 100
Mean Std Mean Std Mean Std Mean Std

Var Pos 1.000 0.000 1.000 0.000 0.628 0.058 0.801 0.068
Equal 1.000 0.000 1.000 0.000 0.555 0.065 0.706 0.077

SP 500
Mean Std Mean Std Mean Std Mean Std

Var Pos 1.000 0.000 0.999 0.000 0.041 0.015 0.107 0.037
Equal 1.000 0.000 0.999 0.000 0.033 0.013 0.085 0.026

Rus 1000
Mean Std Mean Std Mean Std Mean Std

Var Pos 0.996 0.010 0.985 0.020 0.009 0.006 0.040 0.018
Equal 0.996 0.007 0.983 0.015 0.007 0.004 0.034 0.013

Date of market prices: 08-01-2014

Rounded Lasso

Portfolio Size: 20%

OLS Lasso Rounded OLS Rounded Lasso

N Portfolio: 100

OLS Lasso Rounded OLS

OLS Lasso Rounded OLS Rounded Lasso

OLS Lasso Rounded OLS Rounded Lasso

Table 1: For each stock universe, shows the R2 of the true weights vs. those estimated 
from OLS and LASSO regressions of 10 second VIIV returns on stock returns for 100 ran-
dom portfolios. 20% of each universe is randomly selected and given either equal weights 
(“Equal”) or random positive weights (“Var Pos”). The first two columns show results using 
the exact VIIV, the last two for the rounded VIIV. 

SP 500
Var Pos Mean Std Mean Std Mean Std Mean Std
75 pct 1.000 0.000 0.993 0.001 0.013 0.007 0.079 0.019
50 pct 1.000 0.000 0.997 0.001 0.017 0.011 0.070 0.023
25 pct 1.000 0.000 0.999 0.000 0.034 0.015 0.091 0.033

SP 500
Equal Mean Std Mean Std Mean Std Mean Std
75 pct 1.000 0.000 0.989 0.001 0.008 0.004 0.086 0.015
50 pct 1.000 0.000 0.996 0.001 0.015 0.007 0.077 0.014
25 pct 1.000 0.000 0.999 0.000 0.027 0.013 0.075 0.022
N Portfolio : 100

OLS Lasso Rounded OLS

Date of market prices: 08-01-2014

Rounded Lasso

OLS Lasso Rounded OLS Rounded Lasso

Table 2: Using the S&P 500 as a stock universe, shows the R2 of the true weights vs. those 
estimated from OLS and LASSO regressions of 10 second VIIV returns on stock returns 
for 100 random portfolios. The first column gives the percentage of the universe randomly 
selected to have non-zero weights, and the two sub-tables repeat this for both equal and 
variable positive weights. The first two columns show results using the exact VIIV, the last 
two for the rounded VIIV. 
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Dow 30
Mean Std Mean Std Mean Std Mean Std

Var Pos 0.699 0.000 0.905 0.059 0.659 0.063 0.714 0.079
Equal 0.693 0.000 0.905 0.062 0.693 0.000 0.754 0.042

Naq 100
Mean Std Mean Std Mean Std Mean Std

Var Pos 0.699 0.000 0.804 0.028 0.561 0.058 0.621 0.073
Equal 0.693 0.000 0.799 0.025 0.635 0.041 0.684 0.062

SP 500
Mean Std Mean Std Mean Std Mean Std

Var Pos 0.696 0.003 0.785 0.015 0.167 0.041 0.194 0.050
Fixed 0.692 0.000 0.790 0.010 0.164 0.044 0.178 0.048

Rus 1000
Mean Std Mean Std Mean Std Mean Std

Var Pos 0.694 0.006 0.768 0.023 0.092 0.031 0.106 0.038
Equal 0.693 0.001 0.787 0.008 0.087 0.029 0.105 0.034
Portfolio Size : 20%

Lasso Rounded OLS Rounded Lasso

Rounded Lasso

N Portfolio : 100

OLS Lasso Rounded OLS

OLS

Date of market prices: 08-01-2014

OLS Lasso Rounded OLS Rounded Lasso

OLS Lasso Rounded OLS Rounded Lasso

Table 3: For each stock universe, shows the Spearman rank correlation of the true weights 
vs. those estimated from OLS and LASSO regressions of 10 second VIIV returns on stock 
returns for 100 random portfolios. 20% of each universe is randomly selected and given either 
equal weights (“Equal”) or random positive weights (“Var Pos”). The first two columns show 
results using the exact VIIV, the last two for the rounded VIIV. 

SP 500
Var Pos Mean Std Mean Std Mean Std Mean Std
75 pct 0.991 0.001 0.980 0.002 0.079 0.045 0.074 0.047
50 pct 0.934 0.002 0.938 0.005 0.095 0.047 0.093 0.050
25 pct 0.758 0.003 0.825 0.010 0.151 0.044 0.165 0.049

SP 500
Equal Mean Std Mean Std Mean Std Mean Std
75 pct 0.749 0.000 0.748 0.001 0.043 0.041 0.039 0.039
50 pct 0.866 0.000 0.880 0.002 0.092 0.046 0.089 0.042
25 pct 0.749 0.000 0.822 0.008 0.142 0.044 0.148 0.046

Date of market prices: 08-01-2014N Portfolio : 100

OLS Lasso Rounded OLS Rounded Lasso

Rounded LassoOLS Lasso Rounded OLS

Table 4: Using the S&P 500 as a stock universe, shows the Spearman rank correlation of 
the true weights vs. those estimated from OLS and LASSO regressions of 10 second VIIV 
returns on stock returns for 100 random portfolios. The first column gives the percentage of 
the universe randomly selected to have non-zero weights, and the two sub-tables repeat this 
for both equal and variable positive weights. The first two columns show results using the 
exact VIIV, the last two for the rounded VIIV. 
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Dow 30
False Positive Matching False Positive Matching False Positive Matching False Positive Matching 

Estimate Mean 2.07 6.00 8.48 5.72 1.91 6.00 9.05 6.00
Std 1.57 0.00 3.34 0.53 1.65 0.00 3.98 0.00
Real 6.00 6.00 6.00 6.00

Naq 100
False Positive Matching False Positive Matching False Positive Matching False Positive Matching 

Estimate Mean 16.66 18.95 20.68 15.66 16.75 19.00 23.25 17.77
Std 4.06 0.22 5.69 1.62 3.68 0.00 5.92 1.14
Real 19.00 19.00 19.00 19.00

SP500
False Positive Matching False Positive Matching False Positive Matching False Positive Matching 

Estimate Mean 93.20 95.11 55.16 28.67 89.93 96.00 58.31 29.33
Std 9.82 1.01 8.15 4.02 8.65 0.00 7.78 3.94
Real 96.00 96.00 96.00 96.00

Rus 1000
False Positive Matching False Positive Matching False Positive Matching False Positive Matching 

Estimate Mean 180.92 189.46 75.14 31.63 184.06 196.29 74.33 32.63
Std 12.85 5.74 12.88 5.92 11.57 0.87 13.53 5.99
Real 197.00 197.00 197.00 197.00

Var Pos Lasso Var Pos Rounded Lasso Equal Lasso Equal Rounded Lasso

Var Pos Lasso Var Pos Rounded Lasso Equal Lasso Equal Rounded Lasso

Equal Rounded Lasso

Var Pos Lasso Var Pos Rounded Lasso Equal Lasso Equal Rounded Lasso

N Portfolio : 100 Date of market prices: 08-01-2014

Var Pos Lasso Var Pos Rounded Lasso Equal Lasso

Table 5: For each stock universe, shows statistics for the average number of matching and 
false-positive stocks in estimated portfolios using the LASSO algorithm. “Real” denotes the 
true number of stocks in the portfolio. 100 regressions of 10 second VIIV returns on stock 
returns are run for both equal weights and random positive weights on 20% of the S&P 
500.20%, using both exact and rounded VIIVs. 

SP 500
Mean Std Mean Std

Day 1 1.000 0.000 0.070 0.018
Day 2 1.000 0.000 0.156 0.019
Day 3 1.000 0.000 0.295 0.032
Day 4 1.000 0.000 0.392 0.037
Day 5 1.000 0.000 0.476 0.035
Day 6 1.000 0.000 0.538 0.047
Day 7 1.000 0.000 0.576 0.046

- - - - - - - - - - - - - - -
Day 44 1.000 0.000 0.954 0.005
Day 45 1.000 0.000 0.955 0.005
Day 46 1.000 0.000 0.958 0.005
Day 47 1.000 0.000 0.960 0.005
Day 48 1.000 0.000 0.962 0.005
Day 49 1.000 0.000 0.965 0.005
Day 50 1.000 0.000 0.967 0.005
Date of market prices: 08-01-2014 N Portfolio : 10

OLS Rounded OLS

Table 6: Shows the cumulative cross-sectional R2 of true portfolio weights vs. those estimated 
from OLS regressions of VIIV levels on correctly scaled stock prices (as in Section 1) over 
multiple days of 10 second data. Results are averaged across 10 random portfolios with 
variable positive weights made up of 20% of randomly selected S&P 500 stocks. 
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Dow 30
Mean Std Mean Std Mean Std Mean Std

VarPos 1.000 0.000 1.000 0.000 0.994 0.003 1.000 0.000
Equal 1.000 0.000 1.000 0.000 0.992 0.003 1.000 0.000

Naq 100
Mean Std Mean Std Mean Std Mean Std

VarPos 1.000 0.000 1.000 0.000 0.888 0.026 0.997 0.002
Equal 1.000 0.000 1.000 0.000 0.856 0.027 0.995 0.002

SP 500
Mean Std Mean Std Mean Std Mean Std

VarPos 1.000 0.000 1.000 0.000 0.063 0.018 0.471 0.073
Equal 1.000 0.000 1.000 0.000 0.052 0.022 0.327 0.047

Rus 1000
Mean Std Mean Std Mean Std Mean Std

Var Pos 1.000 0.000 1.000 0.000 0.012 0.006 0.155 0.029
Equal 1.000 0.000 1.000 0.000 0.009 0.005 0.116 0.024

Date of market prices: 08-01-2014

OLS Quad Prog Rounded OLS Rounded Quad Prog

Portfolio Size: 20% N Portfolio: 100

OLS Quad Prog Rounded OLS Rounded Quad Prog

OLS Quad Prog Rounded OLS Rounded Quad Prog

OLS Quad Prog Rounded OLS Rounded Quad Prog

Table 7: For each stock universe, shows the R2 of the true weights vs. those estimated 
from OLS and constrained quadratic programming regressions of 10 second VIIV levels on 
correctly scaled stock prices for 100 random portfolios. 20% of each universe is randomly 
selected and given either equal weights (“Equal”) or random positive weights (“Var Pos”). 
The first two columns show results using the exact VIIV, the last two for the rounded VIIV. 

SP500
Mean Std Mean Std Mean Std Mean Std

Day 1 1.000 0.000 1.000 0.000 0.063 0.018 0.471 0.073
Day 2 1.000 0.000 1.000 0.000 0.153 0.026 0.776 0.048
Day 3 1.000 0.000 1.000 0.000 0.281 0.032 0.911 0.023
Day 4 1.000 0.000 1.000 0.000 0.383 0.032 0.959 0.011
Day 5 1.000 0.000 1.000 0.000 0.471 0.034 0.977 0.007
Day 6 1.000 0.000 1.000 0.000 0.532 0.035 0.985 0.004
Day 7 1.000 0.000 1.000 0.000 0.576 0.035 0.989 0.003
Day 8 1.000 0.000 1.000 0.000 0.616 0.030 0.992 0.002
Day 9 1.000 0.000 1.000 0.000 0.643 0.027 0.994 0.002
Day 10 1.000 0.000 1.000 0.000 0.656 0.029 0.996 0.001

OLS Quad Prog Rounded OLS Rounded Quad Prog

Date of market prices: 08-01-2014 N Portfolio : 100

Table 8: Shows the cumulative cross-sectional R2 of true portfolio weights vs. those estimated 
from constrained quadratic programming regressions of VIIV levels on correctly scaled stock 
prices (as in Section 1) over multiple days of 10 second data. Results are averaged across 
100 random portfolios with variable positive weights made up of 20% of randomly selected 
S&P 500 stocks. 
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Rus 1000
Mean Std Mean Std Mean Std Mean Std

Day 1 1.000 0.000 1.000 0.000 0.012 0.006 0.155 0.029
Day 2 1.000 0.000 1.000 0.000 0.031 0.012 0.334 0.049
Day 3 1.000 0.000 1.000 0.000 0.060 0.016 0.540 0.049
Day 4 1.000 0.000 1.000 0.000 0.090 0.020 0.683 0.043
Day 5 1.000 0.000 1.000 0.000 0.122 0.023 0.788 0.033
Day 6 1.000 0.000 1.000 0.000 0.156 0.024 0.849 0.025
Day 7 1.000 0.000 1.000 0.000 0.176 0.028 0.885 0.022
Day 8 1.000 0.000 1.000 0.000 0.203 0.027 0.913 0.015
Day 9 1.000 0.000 1.000 0.000 0.221 0.027 0.931 0.012
Day 10 1.000 0.000 1.000 0.000 0.237 0.028 0.943 0.011

Rounded Quad Prog

Date of market prices: 08-01-2014 N Portfolio : 100

OLS Quad Prog Rounded OLS

Table 9: Shows the cumulative cross-sectional R2 of true portfolio weights vs. those estimated 
from constrained quadratic programming regressions of VIIV levels on correctly scaled stock 
prices (as in Section 1) over multiple days of 10 second data. Results are averaged across 
100 random portfolios with variable positive weights made up of 20% of randomly selected 
Russell 1000 stocks. 
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