MEMORANDUM

TO: File

FROM: Jordan Bleicher

RE: Meeting with Bloomberg LP
DATE: September 16, 2010

On August 23, 2010, representatives from the Securities and Exchange Commission (“SEC”)
met with representatives from Bloomberg LP (“Bloomberg”) and Williams & Jensen, PLLC
(“Williams & Jensen”) at the SEC’s headquarters in Washington, DC. The SEC representatives were
Jordan Bleicher, Henry Hu, Bruce Kraus, and Harvey Westbrook. The Bloomberg representatives
were Gregory Babyak and Adam Litke. The Williams & Jensen representative was Joel Oswald.
Bloomberg and Williams & Jensen discussed the collection of data needed to measure systemic risk
and urged the SEC to support an open source approach to the development of party and financial
instrument identifiers.

On August 30, Adam Litke sent the attached materials to provide additional information
about topics discussed.



Agenda - August 23, 2010 (12:30pm)

l. Systemic Risk
. The Functioning of the Office of Financial Research



From: Hu., Henry

To: Bleicher, Jordan

Subject: FW: Follow up to our meeeting last week
Date: Tuesday, August 31, 2010 8:25:21 AM
Attachments: bsym-whitepaper.pdf

bloomberg_research report cast.pdf
eisenberg noe_systemic risk in financial networks.pdf

----- Original Message-----

From: ADAM LITKE, BLOOMBERG/ 731 LEXIN [mailto:alitke2@bloomberg.net]
Sent: Monday, August 30, 2010 4:48 PM

To: Hu, Henry; Kraus, Bruce; Westbrook, Harvey B.

Cc: gbabyak@bloomberg.net; jgoswald@wms-jen.com; defranasiak@wms-jen.com
Subject: Follow up to our meeeting last week

Dear Sirs:
Thank you very much for taking the time to meet with us last Monday.

As | stated in the meeting, we believe that there are several key information areas where the interests
of the financial services industry and the regulators converge. To the extent that all of the relevant
agencies, SEC, Treasury, OFR, FRB, CFTC, FDIC adopt common standards for the format of the data
that they are collecting from the firms they regulate, it will make it easier and cheaper for these firms to
comply with such requests. It should also serve as an incentive towards internal data standardization
for those firms that have not fully integrated their own data.

In addition to the public standards such as FPML and XBRL, which we fully support, there are several
areas where no public standard yet exists. The most important of these are security identifiers and
capital structure. As promised, | am attaching information on BSYM and CAST.

BSYM is Bloomberg's open symbology for security identifiers. It was designed to deal with the many
different symbol systems used in different securities markets around the world and to solve some of the
problems, such as re-use of symbols, that are inherent in some of these systems. We have made this
available in the public domain. Full information on BSYM is available on the website
http://bsym.bloomberg.com. | have also attached a white paper.

CAST is Bloomberg's capital structure product. In practice it is a combination of two types of product.
The first is a complete list of public companies and their subsidiaries. At the present time, this list only
includes entities that have, at some point in their existence, had either bonds, loans, or equity shares
outstanding . However, as this information is reconciled back to the filings of these companies, it would
be a relatively simple matter for us to include all subsidiaries. The information is stored in tree form and
shows guarantee relationships between the legal entities. The second type of data is the outstanding
obligations of these entities as well as considerable detail on this issuance including covenant
information. CAST presently covers almost 15,000 companies around the world including over 97% of
US companies. | have enclosed a short document that shows how CAST works. In a few days, | will
also forward a larger document that gives more details. If you are interested in this product, including
how we maintain the accuracy of our data, | would be more than happy to put you in touch with Liz
Goldenberg, the product manager for CAST.

Finally, 1 have attached a copy of the paper by Eisenberg and Noe on systemic risk and market
clearing. | think you may find it of interest. Eisenberg is presently at work on a multi-period sequal to
the paper and | would be more than happy to put you in touch with him if you want to discuss his
work. directly.

Please feel free to contact me if you should have questions about any of this.


mailto:/O=SEC/OU=HQ/CN=RECIPIENTS/CN=HUH
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Bloomberg

BSYM
IDENTIFIERS
ADVANCE
CAUSE OF OPEN,
AUTOMATED
SECURITIES
TRADING

Bloomberg Open Symbology Introduces New
Operational Efficiencies and Cost Reductions
for the Trading Community





Bloomberg

Bloomberg Open Symbology Introduces New Operational Efficiencies and
Cost Reductions for the Trading Community

Chaos theory has nothing on the complexity generated everyday by the millions—perhaps billions—of security
transactions that cross trading floors, clearinghouses and exchanges all over the world. Almost every aspect of
securities management is based on closed systems that use proprietary identifiers that are privately owned and
licensed. Closing each deal is as much an exercise in translation as it is in transaction processing, as traders,
investors and brokers wrestle with multiple proprietary formats to determine what a security is, who owns it, how much
it is worth, and when the deal should be closed. It introduces a tremendous amount of friction into the trade lifecycle
and creates opaqueness where clarity is sought. In addition, the use of proprietary identifiers adds significant cost and
overhead when users wish to integrate data from disparate sources or migrate to a different market data system.

Symbols are essential to the securities industry. Each one uniquely identifies a specific security instrument, just as a
VIN number uniquely identifies every motor vehicle. Symbols are used to research and trade securities, assess risk,
manage portfolios, and manage settlement and clearing.

Even though there are national numbering agencies that create unique identifiers, symbol sets have evolved in
complexity over the years to match the growing sophistication of the products they describe. Sets must be extended
and created to catalog levels of granularity in symbology that a single ID simply can't capture. For privately traded,
over-the-counter products, there may be no proprietary ID available.

The evolution of advanced symbologies has helped the securities industry grow, but the limitations and costs imposed

by the closed systems have become more apparent as companies and institutions continue to integrate operations on

a global scale. Proprietary symbology now stands as one of the most significant barriers to increased efficiency and in-
novation in an industry that sorely needs it. Moreover, the lack of common identifiers is a key roadblock to achieving the
holy grail of straight-through processing (STP).

* Licensing fees require firms to pay for each symbol system they use. International firms bear an especially
heavy burden, because they often have to license several symbologies in order to manage trading operations
in several countries.

* Restrictions imposed by proprietary symbologies prevent companies from easily mapping one set of codes to
another. This hinders integration of market data from diverse sources as well as efforts to automate trade and
settlement activities.

* Market data consumers who adopt proprietary symbols for use in their own systems must not only pay licensing
fees, but such symbols also lead to significant future costs associated with efforts to connect to emerging
trading systems.

* Proprietary trading environments may have worked well for years; but they are a byproduct of a time when data
systems operated largely as islands that did not have to interoperate with other systems.

Current trends dictate a different approach. Markets, customers and governments are demanding greater
connectivity, transparency and efficiency. What's more, the openness of Internet-based systems has profoundly
altered the way businesses—and individuals—collect, manage and share information. Thus, in addition to new
regulations that demand clarity and accountability, the move to open symbology is being driven by growing investor
and institutional demands.

Adopting an open system of shared symbology establishes the foundation for a tremendous leap forward in the
efficient trade and settlement of securities. Such a system will allow firms and technology service providers to shift
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resources from laborious, inefficient processes to new investments in tools and products that will better serve clients.

An open system answers the call for greater transparency. Eliminating the need to remove proprietary IDs and re-map
securities will greatly simplify the steps needed to migrate between market data platforms and trading systems.
Availability of a central symbology reference will facilitate mapping between users’ internal systems and create
opportunities for integration and automation of the global enterprise.

In response to the market demand for open systems and symbology, Bloomberg has released Bloomberg Open
Symbology (“BSYM?") identifiers and has dedicated these identifiers to the public as set forth at the BSYM web
site (bsym.bloomberg.com). BSYM is now available as a non-proprietary, open, security identification system that
anyone can adopt. BSYM offers any company involved in securities trading a number of advantages over closed
and costly systems.

* BSYM is a universal securities symbology that offers companies the potential to streamline internal management
functions and reduce costs associated with maintaining multiple symbology systems.

* BSYM can be used independently of any Bloomberg product or system and there is no limit on the term of the
license, so users will never be required to pay for or remove BSYM identifiers from their systems.

* BSYM can be applied in many unique ways. For example, a middleware tool built on BSYM would create a bridge
between companies using proprietary systems, allowing them to speak in a common language without the need to
license additional symbologies. This creates significant cost savings through reduced licensing fees and automated
processing for all participating firms.

* BSYM can be used for any purpose and incorporated into any system now and in the future. Systems built on BSYM
symbology will never be required to pay licensing fees for its use.

* BSYM will greatly reduce the cost associated with changing platforms, allowing companies the freedom to select
systems that best suit their needs.

The call from the market for systems that encourage innovation and efficiency couldn’t be clearer. Bloomberg is com-
mitted to delivering the tools and standards that will help the securities industry enjoy a new era of advancement.

BSYM is not a single identifier. It is the name for Bloomberg's family of security identifiers. The BSYM identifiers allow
trading and market data systems to cross reference security identifiers from various sources and various Bloomberg
data products. Toward that end, Bloomberg is allowing BSYM Identifiers to be freely reproduced, distributed,
transmitted, used, modified, built upon, or otherwise exploited by anyone for any purpose at no cost. Indeed,
Bloomberg is encouraging all members of the trading community to use BSYM identifiers for integration and
redistribution within and beyond their organizations.

BSYM identifiers available at bsym.bloomberg.com can be used to map data across all of Bloomberg's raw data
products, and they can also be used to determine the ‘parse key’ for loading a security on the Bloomberg Terminal
command line. BSYMs can be searched by many proprietary IDs, such as the Stock Exchange Daily Official List
(SEDOL), Committee on Uniform Securities Identification Procedures (CUSIP), and the International Securities
Identification Number (ISIN), as well as by security description, security type, and pricing source.
Bsym.bloomberg.com also provides predefined dump files and searches, as well as custom search and filter
capability. All data is refreshed on a daily basis.

Expanded security coverage, additional Bloomberg Identifiers, and additional mechanisms for searching and requesting
data will be added as needs are defined.

For the purpose of BSYM, a security is defined as an issue that may be priced by multiple pricing sources—such as
IBM's common stock, and the 10 Year US Treasury Bond. An Instrument is defined as a security that is pricing or

©2010 Bloomberg Finance L.P. All rights reserved. 38331632 0310 3





Bloomberg

trading in a specific venue — such as NYSE, AMEX, US Composite, a specific broker-dealer, or Bloomberg Generic
Pricing. Instruments are identified at the level of their market price (Ticker + Pricing Source, BSID). Securities are
identified at the level of the issue itself (Unique Identifier, Name).

Name Name of the company or brief description of the security. The Name of an instrument may change
in conjunction with corporate actions.

Unique ID Unique identifier assigned by Bloomberg to all securities. This id can be used for mapping B-Pipe
and API identifiers to Bloomberg's Data License products. Data License provides extensive funda-
mental and security master data that complements Bloomberg's real time data offerings. The Unique
ID can also be used to load a security onto the Bloomberg Terminal by prefixing the value with ‘ID’
on the command line. In general, for equities, the Unique “ID" groups together instruments that
contribute pricing to the same composite market (e.g. US, JP). However, an exception to this rule
occurs when the same security trades in different currencies in the same market, rendering the
trading instruments nonfungible. In these cases, securities will have a different Bloomberg Ticker
and Unique ID for each currency in which the security trades. MiFID OTC markets are a good
example of this (see examples below). For fixed income securities, the Unique ID identifies a
security across all dealers and currencies, so the Unique ID is not an indicator of fungibility or
participation in a composite for fixed income. The Unique ID of a security may change in
conjunction with corporate actions.

Security Type  Description of the specific security type within its Bloomberg market sector (Yellow Key). This
classification corresponds to the predefined list of files that are available on the BSYM website.
Mappings from Market Sector to Security Type are available on the Web site under the ‘Security
Type Mapping’ link.

Market Sector Market sector that Bloomberg has assigned to the security. This corresponds to the Bloomberg
Yellow Key.

Pricing Source Acronym or short code for the market data source, used on the B-Pipe feed. This field provides
B-Pipe source codes for a variety of asset types. Note that in some cases the source in this field
is not loadable on the terminal. B-Pipe makes a distinction between sessions in the source field,
while the terminal handles this by means of the PCS <G O> function, which allows configuration
of user-specific session preferences. In general, for markets that have electronic, pit and combined
sessions, the pit session will use the source code found on the terminal: the electronic session will
use that code prefixed by “e”, and the combined session will use the source code prefixed by “c’.
In addition, B-Pipe assigns a source code for indices that are not used on the terminal, e.g. DJI for
Dow Jones pricing the INDU index. Pricing Source is currently available only for B-Pipe priced
securities. See the “Pricing Source Descriptions” link on the BSYM Web site for a mapping of the
Pricing Source code to a description of the source.

BSID (Bloomberg Security ID Number with Source) - Unique integer identifier for all B-Pipe securities.
This identifier is used for subscription services in B-Pipe (Managed and On Demand). BSIDs are
unique at instrument level and have a 1-many mapping with the Unique ID field described above.
The BSID of a security may change in conjunction with corporate actions and is available only for
B-Pipe priced securities.

Ticker Unique B-Pipe ticker symbol. Combined with the Pricing Source and Market Sector, this forms a
loadable security string on the Bloomberg terminal for most securities. The ticker may change in
conjunction with corporate actions and is available only for securities that are priced on B-Pipe.
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The rules for forming the BSYM Ticker vary according to security class.

CURRENCY For basic cross rates B-Pipe uses the I1SO codes for both currencies.
Due to the wide variety in type and the desire to keep them short currency derivative symbols are
not so clear-cut. They tend to be based on the ISO codes, but they are often truncated. They can
also be based on the futures exchange codes such as ED, BP, SF, etc. The type of derivative is often
included as an abbreviation, and although the use of the abbreviation is consistent for the derivative
it is difficult to predict. Time periods are almost always included when relevant.
Spot (implied cross rate against the US dollar) currencies are not available. Instead you have to ask
for explicit cross rate, e.g., instead of using “EUR" or “"JPY" use "EURUSD" or “JPYUSD".
EQUITY Equity symbols are usually the exchange ticker.
FIXED INCOME | Fixed income symbols are built by combing a root symbol, the coupon, the maturity date and
an optional series.
A zero coupon is represented by “0”, e.g., “PEISTP 0 01/29/23"
A floating coupon is represented by “F”, e.g., “CNC F 12/04/13"
A variable coupon is represented by preceding the coupon with “V”, e.g.,
“MQB V5.75 02/18/13 1"
Loans are represented by “L" | in the coupon position, e.g., “C L 05/01/98"
A perpetual instrument is represented by preceding a pseudo maturity date with “P”, e.g.,
“BMO 5.474 P12/29/49 D".
The month, day and year of maturity dates are always two digits, 0 padded if needed.
Pseudo maturity dates are often “12/29/49".
FUND For exchange traded funds the symbol is usually the exchange ticker.
Other fund symbols are mnemonics or acronyms built from the description of the index.
FUTURE Future symbols are based on the exchange ticker.
Physical, financial and currency futures symbols use a one, two or three character root for the
commodity followed by the standard month letter and single last digit of the year. If the commodity
code is a single character, such as “W", it is padded with a space so that it is always two characters
INDEX Major exchange indices usually use the common symbol, but the source is not always obvious, e.g.,
B-Pipe subscriptions “/DJI/INDU Index”, “/OPRA/SPX Index"”, “/JT/TPX100 Index".
Other index symbols are mnemonics or acronyms built from the description of the index.
OPTION For future options use the ticker of the underlying future with a “P" or “C" appended, a space and
then the strike price, e.g., “"CDM8C 99.5"
For equity options use the ticker of the underlying equity, a space followed by the month or month/
day of expiration, a space and then a “C” or “P” with the strike price appended. E.g. “IBM 10 C140".
All strike prices drop trailing Os and decimal points, e.g. ,“15.15" is “15.15"” but “15.10” is “15.1” and
“123.00" is "123".
WARRANT For listed warrants with an official exchange symbol, the exchange symbol is used.
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BSYM identifiers can be used to map real time data from B-Pipe or Bloomberg's Server API to Bloomberg's Data
License reference data and corporate actions products.

Field ID (FLDS) Field Mnemonic (DL / API)

DS002
ID059

DS213
DS122
DY003
DX282
ID122

NAME
ID_BB_UNIQUE
SECURITY_TYP

MARKET_SECTOR_DES
ID_BB_SEC_NUM_DES

FEED_SOURCE

ID_BB_SEC_NUM_SRC

B-Pipe Field

Reference.Security.ID.Name

Reference.Security.Bloomberg.UniquelD

Reference.Security. Type

NA*

Reference.Security.|D.Bloomberg.Symbol

MD.Source

MD.Security.ID.BSID

*Reflected in the message type of the B-Pipe reference data message

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

IBM us Composite)

IBM (NYSE)

IBM (German Composite)

BSYM Field
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

IBM (Berlin Exchange)

INTL BUSINESS MACHINES CORP  INTL BUSINESS MACHINES CORP INTL BUSINESS MACHINES CORP  INTL BUSINESS MACHINES CORP

EQ0010080100001000
Common Stock
Equity

IBM

us
399432473346

EQ0010080100001000
Common Stock
Equity

IBM

UN
627065740034

EQ0010080100001007
Common Stock
Equity

IBM

GR
395137622225

EQ0010080100001007
Common Stock
Equity

IBM

GB
1623498268881

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

LLOY (London Listed - GBp)
LLOYDS BANKING GROUP PLC
EQ0011242800001000

Common Stock
Equity

LLOY

LN
678605350662
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LLOY (PLUS - GBp)
LLOYDS BANKING GROUP PLC

EQO0000000005037071
Common Stock

Equity
LLOY
Pz

1997163581670

LLOY (Chi-X - GBp)

LLOYDS BANKING GROUP PLC
EQ0000000002865282
Common Stock

Equity

LLOY

IX

2005750482138
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Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

LLOY (London OTC - GBP)
LLOYDS BANKING GROUP PLC
EQ0000000005002180
Common Stock

LLOY (chi-x OTC - GBP)

LLOY (London OTC - Euro)
LLOYDS BANKING GROUP PLC LLOYDS BANKING GROUP PLC
EQO0000000005002180 EQO000000005103164

Common Stock Common Stock

LLOY (Chi-X OTC - Euro)

Common Stock

Equity Equity Equity Equity
LLOYGBP LLOYGBP LLOYEUR LLOYEUR

XJ XC XJ XC
6111741723983 6064497083727 6111741807243 6064497166987

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

LCJO PIT (CME)

LIVE CATTLE FUTR Apr10
IX8013948-0

Physical commodity future.
Comdty

LCJO

CME

614188830019

LCJO ELEC (CME)

LIVE CATTLE FUTR Apr10
IX8013948-0

Physical commodity future.
Comdty

LCJO

eCME

2078772677955

LCJO COMB (CME)

LIVE CATTLE FUTR Apr10
IX8013948-0

Physical commodity future.
Comdty

LCJO

cCME

9981512502595

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

Daimler May 2010 (LIFFE)
DaimlerChrysler AG May10
EF12666074700074186777
SINGLE STOCK FUTURE
Equity

DCX=K0

LIF

609900809283

Daimler May 2010 (Eurex)
DaimlerChrysler AG May10

EF12399952420074448897

SINGLE STOCK FUTURE
Equity

DCX=K0

EUX

279182846813

Daimler May 2010 (Milan)
DaimlerChrysler AG May10
EF12666075260074186844
SINGLE STOCK FUTURE
Equity

BDCX=KO0

SM

476756828955

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

GS 7.5 02/15/19 (TRACE)
GOLDMAN SACHS GROUP INC
COEH7068206

GLOBAL

Corp

GS 7.502/15/19

TRAC

631369281816
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GS 7.502/15/19 (German Composite)

GOLDMAN SACHS GROUP INC
COEH7068206

GLOBAL

Corp

GS 7.502/15/19

GR

395146080536

GS 7.5 02/15/19 (cBBT)
GOLDMAN SACHS GROUP INC
COEH7068206

GLOBAL

Corp

GS 7.502/15/19

CBBT

665729020184

LLOYDS BANKING GROUP PLC
EQO0000000005103164
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Column Heading FNCL 4 4/10 (Bloomberg Generic) FNCL 4 4/10 (Composite Bloomberg Bond Trader)
Name FNCL 4 4/10 FNCL 4 4/10

Unique ID MG%3278ACK MG%3278ACK

Security Type MBS 30yr MBS 30yr

Market Sector Mtge Mtge

Ticker FNCL 4 4/10 FNCL 4 4/10

Pricing Source BGN CBBT

BSID 12894812880 665729841872

Column Heading RBS CAPITAL FND TRST VII (US Composite) RBS CAPITAL FND TRST VII (NYSE Preferred) RBS CAPITAL FND TRST VI (US Composite) RBS CAPITAL FND
TRST VI (NYSE Preferred)

Name RBS CAPITAL FND TRST VII RBS CAPITAL FND TRST VII RBS CAPITAL FND TRST VI RBS CAPITAL FND
TRST VI

Unique ID PFEP0109264 PFEP0109264 PFEP0093955 PFEP0093955
Security Type PUBLIC PUBLIC PUBLIC PUBLIC
Market Sector Pfd Pfd Pfd Pfd

Ticker ABNA 6.08 P12/31/49 G ABNA 6.08 P12/31/49 G ABNA 6.25 P12/31/49 F ABNA 6.25
P12/31/49 F

Pricing Source  US SNY1 us SNY1

BSID 399432238302 618475570398 399432238212 618475570308
Column Heading T 7.5 11/15/24 (Standard Chartered) T 7.5 11/15/24 (Citigroup) T 7.5 11/15/24 (Credit Suisse)
Name US TREASURY N/B US TREASURY N/B US TREASURY N/B

Unique ID * * *

Security Type US GOVERNMENT US GOVERNMENT US GOVERNMENT

Market Sector Govt Govt Govt

Ticker T7.511/15/24 T7.511/15/24 T7.511/15/24

Pricing Source SCBX CGUK CSFB

BSID 12004433733107 5063766582771 5059471615475

* In some cases Unique ID is blank due to the value being based on a proprietary ID. New IDs are being assigned and will be updated soon.

Column Heading USD-EUR X-RATE (Tokyo Composite) USD-EUR X-RATE (New York Composite) USD-EUR X-RATE (CBA Bank) USD-EUR X-RATE (8am Fixing Rate)
Name USD-EUR X-RATE USD-EUR X-RATE USD-EUR X-RATE USD-EUR X-RATE
Unique ID 1X430979-0 1X430979-0 IX430979-0 IX430979-0

Security Type CROSS CROSS CROSS CROSS

Market Sector Curncy Curncy Curncy Curncy

Ticker USDEUR USDEUR USDEUR USDEUR

Pricing Source CMPT CMPN CBAX F080

BSID 425201809525 416611874933 12648678733941 14289356241013
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Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

June 10 Puts on SPX (US Composite)
June 10 Puts on SPX
IX6956513-0-1400

Index Option

Index

SPX 06/19/10 P800

us

399438708018

June 10 Calls on SPX (US Composite)
June 10 Calls on SPX
I1X6956509-0-9400

Index Option

Index

SPX 06/19/10 C800

us

399438708043

Column Heading April 10 Calls on VOD US (US Composite)

Name April 10 Calls on VOD US April 10 Calls on VOD US
Unique ID EO1016052010040181900001 EO1016052010040181900001
Security Type Equity Option Equity Option
Market Sector  Equity Equity

Ticker VOD 04/17/10 C12.5 VOD 04/17/10 C12.5
Pricing Source  US UA

BSID 399444460111 523998511695
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April 10 Calls on VOD US (AMEX) April 10 Calls on VOD LN (LIFFE)
April 10 Calls on VOD LN

EO101605201004038DC00006

Equity Option Equity Option

Equity Equity

VOD 04/16/10 C110  VOD 04/16/10 C120
EUX

609900043157 279187460380

April 10 Calls on VOD NQ (EUREX)
April 10 Calls on VOD NQ
EO101605201004028F000002
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CAST <GO>

CAPITAL STRUCTURE ON BLOOMBERG

Use CAST <GO> to display a selected company's liabilities and the amount owed to investors at each level
of the company's capital structure.

This provides transparency into how creditors may be paid in the event of the company's bankruptcy.
Typically, secured lenders are paid first, followed by senior unsecured lenders, subordinated lenders, junior
subordinated lenders, and finally, shareholders. CAST also displays information on the corporate structure
of the company, such as the subsidiaries.

HOW TO ANALYZE CAPITAL STRUCTURE

for explanation, for similar functions. EquityCAST

AIG US Eqty American International Group Inc Capital Structure
[el= I | incar Scale [~ |
1) First Lien Loans 60,000MM
2) Unsecured Loan 1,625MM
3) Other Debt:Secured 9,070MM |
4) Senior Unsecured Debt 31,256MM
5) Other Debt:Senior Unsecured 1,355MM |
6) Junior Subordinated Debt 18,026MM
7) Other Debt: Junior Subordinated 1,339MM |
8) Other Debt:Non-Disclosed 1,902MM |
9) Insurance and Investment Contract Liabilities 728,184MM
42,755MM

Eqty Price: 36.05 X
Debt Tkr |Eqty Tkr CDS Tkr -

AIG__JAIG US I 110,907
2 2187 JY

ASTF 11
-AIG SunAmerica Global Financing VI
EFAIG Life Holdings US Inc
American General Institutional Capital B
American General Institutional Capital A
-American General Capital II

‘ Choose an applicable security and enter CAST <GO>.

To filter the debt by currency, choose the appropriate option from the amber dropdown to the right
of CURRENCY. To display the graph with a Log Scale or Linear Scale, choose the appropriate
option from the amber dropdown to the right of GRAPH.

To view the underlying individual securities or as-reported financial data, click on the data label or
the accompanying shaded bar.

Additional elements of the company's corporate structure are displayed in the lower half of the
screen. Clicking on [-] or [+] to the left of the appropriate category will collapse or expand each
category.





Display Security Detail Information

TOLL BROTHERS Equity Recent b Related - Favorites . Export v Terminal " Help

for explanation, for similar functions. Hiiager-S=u gl Clicking on a data

TOLUS  Eqt Toll Brothers I " Capital Struct label or shaded bar on
0 rothers Inc apita ructure .
- pr o Lnear e the Capital Structure

1) Unsecured Loan 1,892MM screen will open either
2) Other Debt:Secured Debt Guarantees sommM ||

3) Senior Unsecured Debt 1,600MM a SeCU”W Detall

4) Senior Subordinated Debt 50MM Screen or FA<GO>.
: M
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Summary. We consider default by firms that are part of a single clearing mechanism. The obliga-
tions of all firms within the system are determined simultaneously in a fashion consistent with the
priority of debt claims and the limited liability of equity. We first show, via e flxed-point argument,
that there always exists a “clearing payment vector® that clears the obligations of the members
of the clearing system; under mild regularity conditions, this clearing vector is unique. Next, we
develop en algorithm that both clears the financial network in a computationally efficient fashion
and provides information on the systemic risk faced by system firm. Finally, we produce qualitative
comparative statics for financial networks. These comparative statics imply that, in contrast io
single-firm results, unsystematic, nondissipative shocks to the system will lower the total value of
the network and may lower the value of the cquity of some of the individual network firms.

We would like to thank the particpants in the 1999 Thscrete Mathematics and Computer Science
Conference on New Market Models for many helpful comments on an earlier draft of this paper.
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Systemic rigk in financial networks

1 Imtroduction

One of the most pervasive aspects of the contemporary financial environment is the rich network
of interconnections among firms. Although financial lishilities owed by one firm to another are
usually modeled as unidirectional obligations dependent only on the financisl health of the issuing
firm, in reality, the liability structure of corporate obligations is invariably much more imtricate.
The velue of most firms is dependent on the payoffs they receive from their claims on other firms.
Thavalueofthmeclaimsdepen&s,intum,antheﬂnancialhealthafyesotherﬂrmsin the system.
Moreover, linkages between firms can be cyclical. A default by firm A on its obligations to firm B
may lead B to default on its obligations to €. A default by C may, in turn, have a feedback effect
on A Thus, financial system architectures may exhibit cyclieal dependence in interfirm obligations,
We consider the problem of finding a clearing mechenism in ceses in which this sort of cyclical
interdependence is present.

All markets have some kind of clearing mechanism. Perhaps clearing mechenisms for inter-
bank payments and for listed exchanges have recsived the most attention. In the United States, for
example, CHIPS and Fedwire are the main banking clearing mechanisms; in Germany, the Abrech-
ming and the EAF (Elektronische AY) rechnung mit Filetransfer) performs this function. Regarding
clearing mechanisms, one of the attractions of trading on a listed options exchange, the CBOE for
example, is that the Options Clearing Corporation is the counterparty to every trade. Hence credit
considerations do not prohibit lower credit traders from participeting in these markets. These pay-
ment, systems are forced to confront large defaults on a reguler basis, Examples of such defaults
include the failure of I.D. Herstatt in 1974 and the Bank of New York overnight shortfall of $22.6
hillion dolliws in 1985. System-wide meltdowns also occur. For example, consider the collapse of the
Tokyo real estate market, the bankruptcy and public bailout of American S&Ls to the cast of about
$500 bﬂ]iﬁndollarsa.nd the Venezuelan bank erisis of 1984. One of the most interesting failures of

a tightly interconnected clearing system was the 1882 collapse al-Manakh Stock Market in Kuwait.
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The clearing system, consisting of approximately 29,000 post-dated checks written by traders, ¢ol-
lapsed after a 40 percent drop in merket values. The nominal gross liabilities of the participants
in the market to each other at the time of the collapse was more than four times Kuweit's GDP

{Eliman, Girgis, and Kotob, 1997).

Surprisingly, despite the obvious importance of the “architecture of financial linkages® for deter-
mining the return-generating process for financial assets, little has been written on cyclical financial
interconnections, Bilateral clearing has been throughly anslyzed in Duffie and Huang (1996). Ro-
chet and Tirole (1996) analyzed the incentive and monitoring impact of an interbank loan. From
a mare empirical perspective, Angelini and Russo (1996) develop an empirical model of infercon-
porate defanlts. In this model, the probability that & default by one firm triggers ancther firm’s
defenlt is exogenously spetified without modeling intereorporate cash flows, Eliam, Girgis, and Ko-
tob (1997) report the actual procedure used to clear infercorporate debts after the Kuwaiti stock
market crash. However, to our knowledge, this paper is the first to analyze, in a general fashion,
the properties of intercorporate cash flows in financial systems featuring cyclical obligations aud

endogenously-determined clearing vectors.

T'his lack of attention to cyclicality is even more surprising given the extensive literature mod-
ding default in a simple unidirectional and bilateral context. In fact, the whole literature on term-
structure of interest rates ignores Lhe congiderations mentioned above, While modeling the valnation
of a firm’s debt as independent from that of other firms simplifies debt and equity models, this as-
sumption becomes questionable in portfolio management, corporate bond trading and the analysis
of counterparty credit risk. The aim of this paper is to investigate the propagation of risk through
clearing systems and the effects of this risk propagation on the return-generating process of system-
perticipants. A desideratum for the future qevelopmmt of these lines of research is the developrnent
of a simple, tractable model for computing clearing vectors for intralinked financial systems. The

aim of this paper is to provide such a mode].
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We develop a fairly general model of e clearing systern. The model satisfies the standerd
conditions on clearing vectors imposed by bankruptcy law: proportional repsyments of liabilities
in default, limited liebility, and absclute priority. We shell show, via a fixed-point argument, thet
there always exists a “clearing payment vector,” consistenf with these conditions, that specifies
the payment made by each node in the system. Moreover, under mild regularvity conditions, this
clearing vector is unique and may be characierized in two weys, First, it is the limit of a finite
sequence of clearing vectors produced by “fictitious sequential defanlt” algorithm, This algorithm,
as well as quickly yielding the clearing vector, produces & natural metric for examining the systemic
risk exposure of firms in the financial system. Second, the clearing vector maximizes the weighted
average of firm payments regardless of weighting scheme, Qur results demonstrate thet any clearing

payment vector maximizes both the cents-on-the-dollar repaid and the total repayments to creditors.

After analyzing the clearing vector, we perform comperative statics on the clearing peyment
vector, determining the nature of its dependence on the vector of exogenous cash infusions es well
#8 on the architecture of financial liabilities linking the various members of the system. More
specifically, we show that the clearing payment vector is a multidimensional conceve function of
operating cash flows and the level of nominal payments, and that the value of equity is not generally
convex in cash flows. These results imply that the total value of firms in the system is concave in
exogenous cash flows. In turn, this increased concavity implies that increased volatility, by lowering
expected interfirm payments, will lower the total value of nodes in the system, even though there are
no costs to insolvency in our model. (And thus the real economic effect of such & shock is nil.) Our
results suggest that using changes in (ote] asset values to measure the effect of an economic shock

on a group of tightly interconnected companies ( e.g., Japanese banks) can be highly misleading.

The paper is organived as follows. In Section 2, we present the model and develop the basic
machinery, including existence uniqueness results. In Section 3, we present the two characterizations
of the clearing vectors and examine their consequences. In Section 4, we derive comparative statics

of the clearing system. Section 5 concludes the paper and considers some extensions,
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2 Framework and basic resuits
2.1 Preliminaries

Let 3 represent n-dimensional Euclidean vector space. Let M = {1,2,..n}. For any two

vectors z, ¥ € R®, define the lattice operations
z Ay = (min[zy, y1], min(za, ya] . . . w20, ya])

zVy = (mexfzy,y ], mex[zs, ¥2] . . . maxX[Ty; Y]
Let 1 represent an n-dimensional vector, ell of whose components equal 1, e, 1 = (1,...,1).

Similerly, let O represent an n-dimensional vector, all of whose components equal 0. Let [« [|; denote

the #£-narm on £7. That is, for ench =z € R° lei,

lzfia 2= Jal.
=1

For each n x n matrix, M, let p{ M) represent the spectral redius of the matrix, the eigenvalue of the
matrix of maximal absolute value. With each livear transform defined on R™ there is an associated
n x 7 matrix M. Let |[| - [|]; be the operator matrix Norm associated with || - {[;. That is, for each
n X i matrix, define

|M]fiy = Sup ||Mz]].
ll=lly $1

It is well known that [e.g., Horn and Johnson {1985) §5.6.4, page 284) that, for any n x n matrix M,

we have
Ml = Mas 3 jossl
B T §

An important definition for our future analysis is of a non-expaasive map. A map T:R" — R is
(€!)-nonexpansive if, Yo € R®,

IT(=) — Tl < Iz — 9l

Whenever an ordering of elermnents of R™ is specified in the sequel, the ordering refers to the pointwise

ordering induced by the lattice operations, i.e.,

Ty <= m;<yforallie N,
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2.2 Economic framework

Consider an economy populeted by » nodes. Each of these nodes is to be thought of a distinet
economie entity, or “financial node” participating in the clearing network. Each such entity may have
nomins] liabilities to other entities in the system. These nominal liabilities represent the promised
payments due to other nodes in the network. We represent this structure of liabilities with the n xn
nominal Habilities matrix L, where Ly represents the nominal Hability of node ¢ to node 7. As the
notion of nominel cleims seems to imply, we assume that all nominal claims are nonnegative and
that no node has a nominal claim against itself In order to reflect this economic interpretation, we
specify that the nominsl liabilities meirix is non-negative and that all of the diegonal elements of
the matrix equal 0; that is, we assume that Vi,j € N, Ly > 0 and that Vi, Ly, = 0. Let e; > 0
be the exogenous operating incame received by node 7 from sources “outside” the clearing system.
Operating income can be viewed as the cash flows thrown off by the real assets controlled by the
node. A financial system is thus a pair (L, e), consisting of a nominal obligations matrix, L and an

operating income vector e, satisfying the conditions given above.

Let p; represent the total dollar payment by node ¢ to the other nodes in the system. Let
P = (p1,P2, . -« Pn) Yepresent the vector of total payments made by the nodes. Let J; represent total

nominal obligation of { to all other nodey, that is,

=) Lig. (1)
i=1

Let 5 = (P1,P9;...,5n) represent the associated vector, which we will term the total obligation
vector. This vector represents the payment level required for complete satisfaction of all contractual

liabilities by all nodes. Lot

I = {0%" o @)
and let II represent the corresponding mafrix, which we will term the relative liabilities matrix. 'This
medrix captures the nominal liability of one node to another in the system as a proportion of the
debtor node’s total liabilities. We sssume that ali debt claims have equal priority. This equality of

priority implies that the payment made by node { to node j is given by p;IL;;. This implies that the
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the totel payments received by 1 are equel to 3.5, TITp;. Further, ell payments are made to some

node in the system and therefare,
7
Vi, Z]Ing =1
F=
or, in matrix notation,
=1,

an equelity we will use later in the analysis.

The total cash flow to the owners of the equity of node ¢ equals the sum of the payments recaived
by other nodes plus the operating income less the payments made to #'s creditors. ‘This implies that

the value of node i equity equals

Ergjpj-l-e«;—pg.

=1

Note also that, by using (1) and {2), the financial system {L,e€), where L is a nominal payments
matrix and e is a vector of operating incomes, can be equivalently described by the corresponding
triple (II,5,e), where II is a relative liabilities matrix, § is a total liability wector and, e is an

operating income vector. We will this descriplion of a fiuancial system in the suhssquent analysis,

Intuitively, a clearing payment vector for the financial system should represent a specification
of the payments made by each of the nodes in the financial system that is consistent with the legal
rules allocating cash flows among nodes and among holders of debt and equity. Three criteria which
must be satisfied are {a) limited liabilily, which requires that the total payments made by & node
must never exceed the cash flow available to the node, (b) the priority of debt claims, which requires
that stockholders in the node receive no value until the node is able to comnpletely pay off all of its
outstanding liabilities, and (¢) proportionality, which requires that if default by occurs, all claimant
nodes are paid by the defaulting node in proportion to the size of their nominal claim on firm essets.

These desiderate motivate the following definition.

Definition 1. A clearing payment vector far the financial system (I1,5,¢) is a vector p* € [0, 7]

that satisfies the lollowing conditions:
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Fignre 1. A Financisl System

The ahove diagram depicts a financial system. The system consists of 4 nodes labeled 1,2, 3, and 4.
Beside each node is a record of the operating income it recelves (e} and the totel payments, 7, it
is contracted to make with the other nodes in the system. The arrows between nodes indicate that
the source node hes en obligation to the target node. When such an obligation exists between two
nodes, say £ and j, the label IL;;, denoting the proportion of i's total lisbilities that are attributable
to debts to 4, is placed beside the arrow.

8. Limited Liability. Vi € N,

n
7 <D g +es.

=1

b. Absolute Priority. Vi € N, either obligations are paid in full, that is, pf = &, or all cash flows
are paid to creditors, that is,

;=Y TG} +es [

J=1

A clearing payment vector for the financial system llustrated in Figure 1 is provided by the
vector @* = (0.20,0.95,0.20,0.60). This vector calls for Node 1 to pay 0.20 to the other nodes.
Because II;z = 1.0, this payment is received entirely by node 2. Nede 1 receives no inflows from
other nodes in the clearing system; thus, Node 1’s total inflows are given simply by its operating
income of 0.20. Node 1's payment of 0.20 is less than its totel obligations of 1.00. Consistent with
ahsolute priority, the clearing vector €hus requires Node 1 to pay out all of its cesh flows. Node 2's

payment under the clearing payment vector is 0.95, which is Jess than 2's obligeted payment of 1.20,
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Because Ilpg = 1, th;spaymentisreceivedentiralybyNode& Node 2 receives inflows both from Node
1 and from Node 4. The clearing vector calls for Node 4 to pay Node 2 pllas = (0.60)(0.75) = 0.45;
as explained above, Node 1 pays Node 2 0.20. Thus, for Node 2, the total inflows from other nodes
plus operating income equel 0.45 4 0.20 4 0.30 = 0.95. Again, consistent with absolute pricrity, all
of Node 2's inflows are paid out to creditors. Node 3's peyment under the clearing payment vector
is 0.20, which is equal to Node 3's obligated payment. Because Ilgq = 1, this payment: is received
entirely by Node 4. Node 3 receives inflows both from Node 2 and Node 4. The inflow fram Node
2 equals (.95, the payment made by Node 2 under the equilibrium clearing payment vector. The
inflow from 4 equals 0.15, 0.25 of 4's clearing payment of 0.60. Thus, the value of Node 3's equity
is 0.10 -+ 0.95 + 0.156 ~ 0.20 = 1.00. Node 2 receives & payment of 0.60 from Node 4,less than Node
4’s obligated payment of 0.80, 0.15 of this payment goes to Node 3 end the remainder of 0.45 goes
to Node 2. This payment exactly equals 4°'s cash inflow, which consists of operating income of 0.40
and a payment of 0.20 from Node 3. Note thet the financial system being modeled is conservative
in that wealth is neither created nor destroyed by the clearing process. Rather, the elearing process
serves to distribute the 1.00 In operating income, received by the financial system as & whale, across

the nodes. In this case, the entire balance is distributed to Node 3.

£.8 Basic network architecture
Definition 2. A set § C N is a surplus set if no node in the sot has any obligations to any node

outside the set and the set has positive operating income, that is if ¥(7,7) € § x 5%, II;; = 0 and

Ei(fse‘i > 01 H

Lemma 1. If p* is a clearing vector, then it is not possible for all nodes in a surplus set to have

zero aquity valne.

Proof. Suppose S is a surplus set. Let P;¥ represent the sum of all of the payments received by a

node { € § rom nodes in $°. By the definition of surplus set, nodes in § make no payments to
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nodes in 5°. Thus, if &1l nodes in 5 have zero equity value, it must be the case that

P5=ZHE;PJ+8¢+I?Z wes, (3)
jes

Summing the equations specified in (3) over 7 € S thus ylelds

Som=) 3 Uips + Y (B +e). @

@y jed de§ {€8

Using the fact that 8 is a surplus set, we also have that

dYni=1 VieS (5)
ics

Expressions (4) and (5) imply that
0= Z(P:l- + &),
Y}

contradicting our assumption that Y, ge: > 0. a

Establishing existence and uniqueness of clearing vectors requires that we present simple facts
about the “architecture™ of the financial system. The existence of a positive liability connecting two
nodes in the system provides a conduit through which the risk of the debtor node can be transferred
to the creditor, If we abstract from the magnitude of thess exposures, we are left with a description
of the financial system as a directed graph in which each debtor is linked via a directed edgewéach

of his creditors. These ideas are formalized below.

Definitlon 3. The financial structure graph associated with the financiel structure (II, 5, e) is the
directed multigraph whose vertices are the nodes of the financial network, A/, and whose edges are

defined by ¢ — § <= Ty > 0.2 I

The direct liabilities of each node in the system are to the nodes to which the agent has

contractus) obligations. However, these direct links by no means exhaust the set of all nodes that

! The technicel distinction between a directed graph and a directed mmltigraph is that in a directed
graph, there is, at most, one directed edge connecting any two nodes, In a directed multigraph, any

number of edges can connect nodes.
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are affected by a node’s default. Defaulis cascade through the systers, the default of a single node,
reduces the inflows to its creditors, perheps triggering the default of one of these creditors, and
even, perhaps, defaults further downstream. How far downstream can the risk of a given node in
the system trave]? An upper bound on propagation is provided by the concept of the risk orbit of a
node in the system. The risk orbit of & node is the set of all nodes which are connected to the given
nede through some directed path, however circuitous, through the system.

Definition 4. For each node ¢ € A, define the risk orbit of node i, denoted by o(i), as follows:
o(2) = {§ € N: there exists a directed path from ¢ to 7} 1l

In the fnancial system fllustrated in Figure 1, the risk orbits of the nodes are given as follows:
o{l) = {12, 3,4} o(2) = {2,3,4}

o8) = {2,3,4} of4) = {2,3,4}.

The strongest sort of systemic interdependency, from the cualitative point of view we are cur-
rently pursuing, is for every node to be in the risk orbit of every other node, that is, for the
financial structure graph induced by the financial system (I, 5, ) to satisfy the following condition:
W{i,7) € Nx N, i ¢ o{j). When this condition ix satisfied we will say the financial system is strongly
interlinked. When a financial system is strongly interlinked, shocks hitting any node in the system,
can he passed, perhaps through some very indirect routes, to eny other node in the system. Becasue,
the financial system presented in Figure 1 is not strongly interlinked, shocks to Nodes 2, 3, and 4
cannot affect Node 1. However, simply introducing, say, some obligation of Node 4 to Node 1, wonld

render the system strongly interlinked.

Tt would appear that, because they sbstract from the magnitude of exposures, concepts such
a§ strong connectedness and risk orbils are incapable of providing any useful characterization of
clearing payment vectors for the system. This is not correct. In fact, & very simple property of risk

orbits forms the basis for our proof of the uniqueness of the clearing payment vector,

Lemma 2. Suppose that p° is a clearing vector for (11,5, e), Let o(3) be a risk orbit that satisfies





Jurs 19, 1989 Clearing Notworla 1

3 s¢o(s) & > 0. Then under p* at least ane node of ¢ has positive equity value, that is,

3j € old), such that fi; < (I7p" +€);.

Proof. First note that o(¢) is a surplus set. To see this, note that if some node, say #* in o(f) owed
something to a node j € o3)°, then, by appending to the directed path from £ to # the edge ¥ — j,
one could construet a directed path from i to 7, contradicting the assumption that § is not in of3).

Lemms 1 shows that every surplus set contains & node with positive equity value. a

The Intuition underlying Lemma 2 is clear. No financial “shock” can be absorbed by & bankrupt
node of the financial system. The shock must be transferred, initially perhaps to other bankrupt
nodes, but ultimately through some directed path(s) through the system to a solvent node. In the
example considered in Figure 1, tﬁe lemma implies, sinee Node 3 is the only solvent node, that all
other nodes contain Node 3 within their risk orbits. This is indeed the case, es can be seen from the

risk orbits computed above.

2.4 Existence/Uniqueness of ¢ clearing payment veclor

Limited liability and absolute priority imply thet p* € [0, 7] is & clearing payment vector if and
only if the following condition holds: Vi € NV, -

n
pf = min [81 +j§fﬁ}p;, ﬁ«] -
The clearing payment: vector, p*, is thus a fixed point of the map, ®(-;I1, 8, €): [0, 5] — [0, §], defined
by
O(p;1,5,¢) = (ITp+ ) AG.

An economic interpretation of ® is that $(p) represents the total funds that will be applied to satisfy
debt obligations, assuming that nodes receive inflows specified by p from their debt clairs on other

nodes. The basic properties of the ®-map are recorded in the following lemma,

Lewoma 3. The map & is positive, incregsing, coneave, and nonexpansive.
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Proof. The essertions of positivity, monotonicity and concavity follow because @ is the compaosition
of the positive, increasing, affive map ¢ — IITq + e, end the positive, increesing, concave mep
g — g AP, To show that the map is nonexpansive, first note that, for any three vectors =, y, and 2,
leAz—yAzlly < [Jz—yli1. This result implies that [|8(p)—8(@)Il1 = [|((F p+e)Af— (I p"+e)Ap]: <
II¥p— 7P [j;. Next note thet the column sums of II* all equal 1. This implies, from hasic matrix

algebra, that (|07 ]|y = 1. Thus, [TITp— 7|1 < |lp — #/[[1, establishing the result. O

Each of the regularity properties of the ® map has a fairly straightforward interpretation.
The fact that the map is positive just says that as long as inflows from the obligations of other
nodes are positive, the node will itsclf make positive payouts. Monotonicity reflects the positive
interdependence of the links in the financisl system. The larger the payout 8 node received from
other nodes on their debis, the larger the payout the node can itself make to other nodes. Concavity
implies that increasing “dispersion” in the magnitude of the varigtion in payments made across
nodes reduces overall ability to pay. Nonexpansivness reflects the “stability” in the clearing system.
An increase in the input vector to the & map never yields a change in the output vector that is larger
in absolute magnitude than the change in the input. Instead, slthough individual components of
the output vector may grow disproportionatly, the change in the overall cutpul vector is no larger

in magnitude than the change in the input vector.

The previous lemmas form the basis for the first important result of our analysis: & demonstra-
tion of the existence of & clearing payment vector associated with every financial system, end of the

uniqueness of clearing vectors under a fairly weak additionel restriction that we term “regularity.”
Definition 6. A financial system is regular if every risk orbit, o(3), Is a surplus set.

Lemma 4. The following conditions are each by themselves sufficient for a financial system to be
regular: (i) all nodes have positive equity balances or, (ii} the system Is strongly interconnected and

at least one node has a pasitive cash balance.
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Proof. Tt follows directly from the definitions of surplus set and strong interconnection, that (i) and

(i), ensure regularity.

Intuitively, regularity means that any reaximal connected subset of nodes of the financial system
hes some surplus to transfer among the nodes of the system. The corollary shows that this will be
the case whenever the financial systern is strongly interlinked or each node is endowed with some
transferable surplus.

Theorem 1. Corresponding to every financial system (IL 5, €),
a. there exists a greatest and least clearing payment vector, pt and p—.

b. Under all clearing vectors, the value of the equity at each node of the financial system is the

same, that is, if p’ and p” are any two clearing vectors,

(07 (@) +e—p)* = (OT (") +e—p)*.

c. If the financial system is regular, the grentest and least clearing vectar are the same, ie.,

p* = p~, implying that the clearing vector is unique.

Proof Let FIX(®) represent the set of fixed polnts of ®. Because ® is incressing, ®(0) > 0
and B(7) < B, the Tarski fixed-point theorem (ses, e.g., Zeidler (1986) Theorem 11.E) implies that

FIX(®) is non-empty and, moreover, possesses a greatest and least element. Thus (a) is established.

To prove (b) let p’ be any clearing vector. We will show that the value of equity is the same

under p’ and p*. This is sufficient to establish (b).

To show that the value of equity is the same under p’ and p*, first note that II7 is an increasing

map, as is the map £ — =V 0 = zt. Thus, we must have, because pt > p/, that

(I (p*) +e—~p) VO > (T (p) +e—5) VO.
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Thus, if

(" (%) +e—p) VO£ T @) +e—F) VO,
then we would have that

mT(p+)+e—rﬁ)v0§(D“”(p’}+e—ﬁ)v0-

Because p* and p~ are bath clearing vectors, it also must be the case that

M (p*) +e—-MH VO =T (p%) +e—pt,
@) +e—pVvo=IFGp)+e—p.

Expressions (6), (7) and (8) imply thes
HT(p+)+e-—p+§HT(p')+er’.
Now, note thet T11 = 1. This implies that
1- (@G —p*) =1. (0" @) ~#) = 0.

. Thus,

1 () +e—pt) =1 (IT7 (@) + e - 7).

However, (9) implies that

1- (T +e—p*) > 1- (T (@) +e- 7).

The contradiction between expressions (10) and {11} establishes (b).

14

(6)

)
®)

(9)

(10)

(11}

Two distinct clearing vectors producing the same equity vaiues at all nodes is not passible if the

financial system is regular. To see this, first note that beceuse pt and p’ are distinet clearing vectors

and ¢’ < p', and because, for all nodes i that have positive equity value p} = p} = fi;, it must be the

case that for some 4 with zero equity value, p; > p).. Regularity implies that the risk orbit of i is &

surplus set. By l.emmas 1 and 2, there exists a directed pathi = ég — 4y — ...

~r 4. —+ 4 = 7 with
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the property that the nodes 4;...4;_1 are zero-equity-value nodes, and ¢; = § is & positive-equity-
value node. Because all cashflows into zero-equity nodes are paid out, iy —+ 3, and p’ < p¥, it
follows that
P, <BL_, = P, <D

Thus, ¥} < pi implies that g, _, < pj _ . Because é_y — # = j. It follows that the payments
receivedbyjamhighm'mdérp*’ then under »’. Since j has positive equity value under both
clearing payment, vectors, and the payments received by j from other nodes cannot he any smaller
under p* than they are under ' (because p’ < p¥), it must be the case that the value of j’s equity is
strictly higher under p* then it is under p—. This contradicts (b), and this contradiction establishes

that p~ = pt, i.e., that (c) holds. (]

Some intuition for the importance of regularity for the uniqueness result is provided by the
following example. Suppose the system contains two nodes, 1 and 2, and each node hes a zero
operating income. Moreover, each node has nominel lisbilities of 1.00 to the other node. In our
notation we have that e = (0,0)7, § = {1,1), and

= [‘1’ [1,]
This system is not a regular financial system, because the single risk orbit of the system {1,2} is
notlasurpiusset. In this example, any vector of the form p: = £(1,1),% € [0, 1] is a clearing vector
for the system. In contrest, if we modify the example by giving ane cent to the first node by setting
¢ = (0.01,0)-, we see that the unique clearing vector is given by p* = (1.00,1.00). The payment
vectors py, £ < 1, do not satisfy the absolute priority condition under given €' because they leave
Node 1 with an equity balance of 0.01 despite the fact that Node 1 has not completely satisfied its

nominal obligation to Node 2.

8 Characterizing clearing vectors
8.1 Sequence of defaults
In this section we show that the clearing vector can be viewed as the product of a simulated

or “fetitious” default process. This process both permits the construction of & simple algorithm
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for identifying clearing vectors and produces a natural metric for measuring a node’s systemic risk
exposure. We call this simple algorithm the fietitious defaalt algorithm. In essence, the idea behind
the algorithm is strajghtiorward. First determine each node’s payout assuming that all other nodes
satisfy their obligations. If, under the assumption that all nodes pay fully, it is in fact the case that
all obligations are satisfied, then terminate the algorithm. If some nodes default even when all other
nodes pay, try to obvious the system again, assuming thet only these “frst-order” defaults occur.
If only first-order defaults occur under the new clearing vector, then terminate the algorithm. If
second-order defaults occur, then try to clear again assuming only second order defaults oceur, ete.
It is clear that since there are only » nodes, this proeess must terminate after n iterations. The point
at which a node defaults under the algorithm is a measure of the node's exposure to the systemic
risks faced by the clearing system.

Describing the algorithm in detafl and proving that it is offective requires that we develop
some new coucepts. Let & be the set of supersolutions of the fixed-point operator ®; that is,
S = {pe0f: 2 <} Notetha, for any such supersolution, because total equity value is
positive, it must be the case that at least one node does not default, ie., it is not possible that
&(p) < p. For each p € §, let the default set under p, which we denote by D{p), be the set of
nodes i, such that ®(p); < #i. By the earlier observation, D{p) cannol contain all nodes. Let A(p)
represient, the n X n diagonal matrix defined as follows:

_J1 i—jandicDp)
Alp)s 0 otherwise.

A(p)i; is a diagonal matrix whose values along the equal 1 along the diagonal in those rows rep-
resenting nodes not in defeult under p, and equal to 0 otherwise. Thus, when multiplied by other
matrices or vectors, the A matrix converts the entrics corresponding to the nondefaulting node to 0.
The complementary matrix I — A(p’) converts entries corresponding to defaulting nodes to 0. For

fixed ¢’ € 8, define the map p — FF, (p) es follows:

FFy (p) = A@) (T (A@)p-+ U — AWP) 4 ) + (T - A6 (7). (FIX)
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This map, FF,(p), simply returns, for all nodes not defaulting under g/, the required payment 3,
and, for ell other nodes, returns the node’s velue assuming that nondefaulting nodes under p’ pay
in full, and defaulting nodes under ¢’ pay p. By our earlier result, Lemms 1, the default set is not
a surplus set. Thus, A(p)TI bas a row sum that is less than 1, and no row sum exceeds 1, this, in
turn, implies that FF,s has a unique fixed point by standard input-output matrix results (Kerlin,
1959, Theorem. 8.3.2). Call this fixed point f{p/). Note that only when g’ is a supersolution cen
we be assured that f{p’) is well defined. Next, define inductively the following sequence of payment

vectors,
=5 ¢ =1, (FDS)

We call this sequence of vectors the fickitious default seqmence, and we call the process of producing

these vectors the fictitious defauli algorithm.

Lemma 5. The fictitious default algorithm stated in (FDS) produces & well-defined sequence of

vectors, p’, ‘This sequence decreases to the clearing vector in at most n iterations of the algorithm.

Proof. First, we show by induction that the fictitious default sequence is well defined and decreasing.
To show this, we must show that for all p?, p? is a supersolution to & for all j and that the sequence
(p?) decresses. We cstablish this result by induction. When § = 0, these assertions are chvious.
Next, suppose the assertions are true for p*. Note that the heﬁﬂﬁm of the A matrix implies that
AP*)P* + (I — A(p*))§ = p*. Because py. is a supersolution to ®, it must be the case that for
all defaulting nodes 4, (TIp* + €)¢ < pf. This implies, combined with the definition of A, that
&(p*) = FFu(p*). By the induction hypothesis, p* is a supersolution to @. Therefore, p* is &
supersolution to FF,. This fact implies that p***, the fixed point of FF e, is less than or equal
to pe. Because p**! < p*, the set of nodes at which default occurs must be no smaller under p*
than under p***. Now, if the set of nodes is the seme, then ®(p*+!) = FF(p"), and which implies,
because by definition p*+! is a fixed point of FF,«(p*), that p**! is a fixed point of ®, and thus
trivially a supersolution. If the set of defaulting nodes is larger under p**!, then some nodes that

peid their obligations in full under p* default under p*+1, and the rest of the nodes either default
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under both payment vectors or under neither. Thus, for these nodes such thast default occurs under
21 but not p*, ¢{p*t1); < pF*. For all other nodes, the fixed point construction implies that
B(p*+4); = pFtl, Thus, we have that p7 is a supersolution to @ and that (p;) is a weakly decrensing

sequence.

As shown in the previous paragraph, if the set of defaulting nodes is the same under both pi+l
and p/, then (i) p is a fixed point of ¥, and (i) the sequence will remain constant after pyrg. If p°
fails to be a fixed point of the map &, then a node that did not: default under p? defaulis under pf+!.
In this case, the number of defaulting nodes, specified in the next A matrix, will incresse in the next
iteration. Because there are only n nodes and at most n — 1 can defgult in any supersolution, it
must be the case that the payment vector procuced by the algorithra ceases to change after at most
n iterations. Because the sequence is canstant only at fixed points, the clearing vector is attained

in at most n iterations. ™

The fictitious default algorithm works as follows. First, start with a trial solution which specifies
that all nodes pey their obligations in full. Tf all node are indeed able to satisfy thejr obligations
assuming that other nodes meet theirs, then the algorithm termineles with a clearing vector. If some
node defaults under the first trial solution, fix the payments of the nondefaulting nodes under the
first trial solution at full repayment and solve the linear equations that equate inflows and payments
for those nodes that defaulted under the first trial solution. This process generates a second trial
solution. If no new defaults occur under the second trial solution, then the second trial solution
is & clearing vector. However, in the second trial solution, the value of the nodes will be lower
than at the first trial solution because inflows will be given a smaller payment vector. Thus, some
nodes that did not default under the first clearing vector may defaulf under the second. If defaults
occur, then fix the payments of the nodes that did not default under the second trial sohution al
full repayment and solve for the payments of the remaining nodes, ete, Contimied iteration of this
procedure produces a series of payoff veclors that converge to the dearing vector. Because the trial

solution only changes when & new default occurs, convergence must occur in at most 7 rounds. Note
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that for large networks, this procedure is much more efficient than the extensive procedure of solving
the linear equations that define the clearing vector for all possible subsets of nodes, because this sort
of extensive procedure requires solving up to 2* sets of lmear equetions rather than at most the n
linear equations that must be solved using the fictitious default algorithm, An example Mlustrating
the fletitious default algorithm is provided below. The parameters of the financial system are given

as follows:

Example: Fictituous defanlt algorithm

Finencial system:
0 B & o
0 o & L 614 13 12

U= '11_3 0 0 %% 3 ﬁ—(llgfgvg)i e—(gs'l_d:iamg)

0o 3 % o

Steps in fAetitious default algorithm:

Trial solution: p Default sef: IS{p)

pO (11'3:%3 ) {134}

P1 {%s %s %:%) {152:4}

pz {%l%ﬁ%l%:%) {1:2s4}

In the example of the fctitious default algorithm, the initial solution, £, is set to full repayment.
At this solution, Nodes 1 and 4 default. The next solution, p!, set to equal the solution to the linear
equations that clear the system assuming that only Nodes 1 and 4 default. At p', in fact, Node 2
defaults in addition to Nodes 1 and 4. The next iteration solves for p?, the clearing vector assuming
that only Nodes 1, 2, and 4 default. Under 72, in fact, es assumed, only Nodes 1, 2, and 4 do default.
Thus, the default set does not chenge and the algorithm terminates, producing the clearing vector

in two iterations.

In addition to being computationslly efficient, the algorithm has an economic inferpretation;

The step in the algorithm at which & node is added to the defaulting sot can he used as & measurs





Junc 19, 1999 Cloaring Networks 20

of the node's financial health, Nodes that default under the fimst trial solution are fimdamentally
insolvent because they cannot survive even with no systemic risk exposure. Nodes that fail in the
- next wave are quite fragile in that they fail whenever fundamentally inzolvent nodes feil. The third-
order failures are triggered by the failure of fragile, but not fundementally unsound nodes, ete. Thus,
nodes are partitioned by the algorithm into solvent nodes and 1, 2 ... n — 1-th order failures. Thus,
the algorithm, combined with Monte Carlo simulation of exogenous income of the nodes, e, can be
used to construct a probability distribution over orders of default for each node associated with the
given stochastic shock to exogenous income. This distribution could form the basis for a practical

metric for systemic-risk exposure to nodes in a financial network.

8.2 Prograywming characterization

Next we will show that clearing payment vectors can be identified by solving almost any pro-
gramming pfoblem theat places weight on meximizing peyments by all nodes in the system subject
to the limited liability condition. Formally stated, we associate with each financlal system (11,7, ¢),

and each function f : [0,5] — R, the programming is problem

P(Lp.e f) Plg[gvg] f(®
s.t. p<Ip+e.

The link between this programming problem and clearing payment vectors for the financial

system is provided by the following lemma.

Lemmma 6. If f is strictly increasing, then any solution to P(I, §, 2, f) is a clearing vector for the

financial system.

Proof. If p* solves P{11, 5, e, ¢}, the the fact thai p* is a feasible solution to P{II, 5, e, ¢) ensures that
p~ satisfies the limited liability condition for a clearing payment vector. If absolute priority were not

satisfled, say at node i, then it would be the case that pf < 5 and

(I7p" +e "% >0
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Consider the vector p, which is equal to p* in all components except ¢, and, for 4, Is given by pf + ¢

where € is chosen sufficiently small to ensure that limited lahility remains satisfied. Because
(HTPe-I-e—Pe)j“(HTP"Fe—P‘);‘=€nij20|
Pe i8 fensible. Because p, is at least equal to p° in all its components and greater than p* in one of

its components, and f is strictly increasing, it must be the case that f(»*) < f(p.), contradicting

the suposition that p* is a solution to P(II, §,e, f). O

Because clearing vectors ate determined entirely hy the limited lability and absolute priarity
conditions, it follows that these two conditions always produce payoff vectors that maximize the
totel extraction of payments from the nodes in the financial system. Because the clearing vector
is unique in any regular financial system, the result also implies thet in regulsr finencial systems,
all decision mekers who prefer more payments to less will agree that the clearing vector meximizes
their objectives. Thus, for example, whether one attempts to maximize cents on the dollar paid or
total payments, or payments weighted by a biased weighting scheme that favors some nodes over
others, the end result will be the same—the selection of the clearing vector. The above result shows
also that, for a regular financial system, solving the programming problem given by P(II,J,e, f)
for a suitably chosen function f, say a linear function with positive weighting constants, is & wey
of computing the clearing vector. In fact, this is exactly the approach the monetery authorities
in Kuwait took to clearing the financial net after the crash of the al-Manakh market. Given the
n— 1-step convergence of the flctitious default algorithm discussed above, however, this programming
approach may not be an efficient way of ecomputing clearing vectors given thet only one variable
will be introduced into the basic solution on each pivot. Algorithms that exploit the economics of
the problem, such as the fletitious defeult algorithm developed above, allow for the sironltaneous

introduction of many defaulting nodes in a single step.

4 The Comparative statics of the clearing system
The first question we will address is how this clearing payment vector changes with changes

in the exogenous parameters of the model. We first consider the relationship between this clearing
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payment vector and the operating income received by the system e, while holding the nominal
liability matrix L (or equivalently I and §) constant. The basic characterization of this relationship
is provided below. Inordertoensurethattheclearingvacborisuni‘que and, thus, that comparative
statics in the traditiona] sense are possible, we henceforth restrict our attention to regular financial

systems,

Lexmna 7. The clearing payment vector is a coneave, increasing fimetion of operating income and
the level of nominal linbilities, and is cancave in the relative liabilities matrix. In other words, the
function e — FIX(®(+;11,5,e)), and the function § — FIX(®(-;11, 5, e)) are cancave, Increasing, and

nonexpansive; further, the frmction II — FIX(®(; 11,5, €)) is cancave,

Proof. For the purposes of this proof, define the function ¥:[0,5] x %% ,:— [0,8] by F(p,e) =
®(p,e;I1,5). The clearing payment vectar is given by the function f:%%, — [0,5], defined by
fle) = FIX(F(.,¢)). A theorem from Milgrom and Roberts (1984) shows that the fact thet F' is
increasing in e (established in Lemma 3) implies that f is increasing. To see that f is concave and

nonexpansive, define a sequence of functions,{ f..(e)}5%, inductively as follows:

fﬂ(e) = F(fn—l(e);e)v fﬂ(e) = 0.

For each fixed € € R4, fale) is just the nth iteration of the map p — ®(p; I, 7, ¢} function starting
at the initial payment vector 0. Thus standard results on the convergence of iterates of monolone
increasing operators show that f,,(e) T f{e), for all e. Using the fact that # is nondecreasing, jointly
concave in p and e, and nonexpansive, induction shows thai, for all n, f, is concave and nonexpansive.
Thus, f is the pointwise limit of nonexpansive concave functions and thus concave and nonexpansive.
The above argument establishes the claim of the lemma for the function e —» FIX(®(-; 11,5, e)). The
proof of the claim for § — FIX(®{-;I1,5,¢)) and IT — FIX(®(-;II, 5, e) is identical and thus will be

omitted. 1

Note that in the standard single-period/single-firm financial model, the payment to debtholders

equals min[p,e] where e is the firm's operating esrnings and $ is the level of the firm’s nominal





Juno 19, 1889 Cloaring Notworks 2
liabilities. Thus, the payment received by debtbolders is a conceve, increasing, nonexpansive func-
tion of the firm's operating income and the level of nominal lishilities. Lemma 7 shows that these
quelitative features of the debt payments in single-firm settings are inherited by the debt payment
vectors of multi-node clearing systems. This result has & nurnber of direct implications. For ex-
ample, coneavity of the payment stream in operating income implies that incresses in the riskiness
of operating income, in the sense of second-order stochestic dominanee under the market-pricing
measure, will reduce the expected payments recaived by debtholders and thus lower the value of
debt claims. However, such risk shifts will not lead unambiguously to increased equity values for the
nodes In the system. The reason for this is simple. In our model, all debt claims are owned by some
stockholder at some node of the systam. This implies that increases in risk across the system have
two effects. First, they raise the value of equity by lowering the value of the debt payments made
by stockholders to other nodes. Second, the increased risk also lowers the velue of the portfolio
of debt securities held as essets by each stockholder. Thus, the effect of global nsk increases is
ambiguous, The concavity of the clearing payment vector in the relative liabilities matrix implies
that payment structures that are nondiversified (each firm makes all payments to one other firm)
produce smaller clearing vectors than systers featuring diversified cleering vectors (each firm hes

roughly equel obligations o all other nodes).

Next, note that all of our results can also be interpreted in terms of node value, Tbund;:rstand
this, note that the terminal-date equity in a financial system is TI7p" + ¢ — p*, and the debt is p*(e),
where p* is the clearing vector for the finaneial system. Thus, the totel terminal value of any node
in the system is the value of debt plus the value of equity, or IITp* + e. Total value of all nodes in
the economy is thus just 1. (II"p* +¢e) = 1 - (p* + e), the sum of the value of equity and the value
of ell payments on liabilities under the equilibrium clearing vector. From this result we obtain the
following simple corollary to Lemma 6.

Carollary. Increase in the diversification of obligations among nodes, increases the aggregate velue

of nodes in the clearing system.





June 19, 1880 Cloaring Notwarks 24

Another siraightforward, but nevertheless interesting consequence of Lemma 6, relates to the
effect of income volatility on the aggregate value of nodes in the financial system. Since, in an
arbitrage-free economy, the initial value of & nodes s just the discounted expectation of its terminal
velue under the equilibrium pricing measure, and because the function mepping income fo node

value, ¢ — II¥p"(e) + ¢, is concave, the following corollary to Lemms 6 is immediate.

Corollary. Increases in the unsystematic volatility of exogenous shocks {operating incoms) to the
financial system lower the initial value of all nodes in the system.

Thus. node value is reduced by unsystematic economic volatility, even though, in our analysis
their are no dissipetive consequences of financial distress even when markets are perfect and frie-
tionless. Volatility reduces the size of payments between nodes and this reduces the market value of
nodes. Since, clearly in the frictionless market setup specified above, unsystematic volatility has no
adverse welfare consequences, this result should be interpreted as a caution against interpreting the
reduction in corporate value caused by unsystemadic risk as reflecting either market imperfections

or irrational asset pricing.

Next, we show that, in some scnse, convex combinations of financial systems can never have
defnult or payment rates inferior to the worse of the two or superior fo the better of the two. In
order to permit a precise formulation of this idea, let p*(II, #, e} be the clearing payment vector as-
sociated with an arbitrary financial system (I1, 5, e); that is, p~(I1, , €) = FIX[®(-; 5, ¢)]. A A-convex
combination of the financial systems (IV, 7, €') and (I1”, §”, ¢”) is the financial system, {Ilx,8x,21),
defined by

(Hlvfa\y e)i) = ,\(H’,ﬁ’,E’) T (1 - A)(H",ﬁ”, e”):’\ € IDI 1]:

Lemma 8. Suppaese that the financial system (115, Pa, £3) i8 a A-convex combination of the financial
systems (IU', 7 ¢') and (11", 7", e™), then the equilibrium clearing payment vectors of the financial

systams {p") satisfy the following inequalities:

p'(nf’ﬁ" 8’) Ap' (H":ﬁ”: 8”) S p'(na\:ﬁa\le)\) S p.(nr'lﬁ(’ e’) VP'(H":ﬁuu e”)'
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Proof. Note that, for all { € N, the function A — &{p;II,, Pa, € ) Is linear, and therefore monotonae.
Thus we have that

e(p I, 0, e") A B(; I, 7, 6") £ B(p;1Ia, a,02) < B IT, 7, ) V &5 117, 7, ).

H™(p) = ®(p; I, 7, ') AB(m 1", 7, €"), H'(p) = ®(p;IT,7,e')V (p; 1", €").

Note that H~ and H* are monotone, increasing maps defined on [0, §] with fixed points in this
order interval. If pt* is a fixed point of H and p~ is a fixed point of H~, then the above inequality
implies that

P~ <p*(hh,e) < pt.

Because p*(Il', #,¢") v p*(I1", ", "} is a supersolution to H7, ie,,
pt <", P, ¢) Vi {Il", 5, ).
Similarly, because p"(Il', 7, ') A p*(II”, #, €} is a subsolution to H~,
p~ 2p"Il, 7. e) Ap" (", 0", €").
The inequalities follow. O

Lermma B is a fairly weak result. Howaever, a stronger charecterization, such as & concavity result
for financial systems, i.e., a result showing that convex combinations of systems yield higher payment
rates than convex combinations of the payment vector of the two systems being combined, cannot
be obtained. In fact, it is ensy to construct counterexamples to this stronger characterization.? The
failure of concavity occurs because the map (I,p) — &(p;IL5,¢) is not concave, although it is

concave in each of the variables, IT and p, separately.

? A mumerical counterexample is availeble upoh request.
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8 Possible extensions and concluding remarks

In this paper, we provide conditions for the existence and uniqueness of & clearing vector for
a complex financial system, anslyze the properties of the clearing vector, and provide comparative
statics describing the relationship between the clearing vector and underlying parameters of the
financial system. This work represents a confribution to our understanding of the modeling of
complex financin] systems featuring cyclical obligations between the parties. However, it is only
& first step in the development of a research program in this area. In fact, one of the virtues
of our analysis is that it can be extended in many directions, Extensjons fall into three broad
categories: (1) utilizing the current model for valuation and risk analysis; (i) dealing with more

complex legal /institutional structures; aud (iii) incorporating dynamics.

The simplest extension of the present anelysis is to use the formulse developed in the paper to
value financial ¢laims and assess default probabilities for financial networks. Given a structure of
liabilities, the value of the debt and equity claims for a fixed level of exogenous income at the terminal
date is determined by our model. If we assume exogenous income follows a stendard stochastic
process between the initial date and the clearing dafe, then this stochastic process, combined with the
terminal boundary conditions imposed by our mods} and standard risk-neutral valuation technology,
can genernle prices for the debt and equity of the nodes in the system (sce, for example, Duffie
{1992)). In addition, probabilities of default and default correlation can be easily be computed. In
addition the distribution of cash flows to each of the nodes also can be computed and inverted to

yield value-at-risk estimates.

Extending our results to allow for more complex legal and institutional structures is almost
as transparent. For example, the nodes in the system could be allowed to hold intercorporate
equity claims as well as intercorporate debt claims. In this case inflows would be augmented by
equity as well as debt inflows. Because equity claims are linear, this extension would not complicate
our analysissignifieantly. Multiple priorify classes enuld be accommodeated by our framework. 1o

accommodate multiple priority classes, we would utilize a sequential clearing procedure in which first
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a clearing vector for senior claims is found, then the residual value is treated as the exogenous equity
in the system for the second clearing of the next highest priority claim, etc. Another important
extenston would be to ellow for viclations of ahsolute priority, a significant factor in corporate
bankrupicies, though not in some of the financial network clearing systems adressed earlier. The
kay assumptions that drive most of our results are that credifor claims are continous and increasing
in the value of the node. If violations of absolute priority are the product of efficient multilateral
bargaining, es assumed in much of the literature (e.g., Brown, 1996), then creditor ¢laims are likely
to have this property. In petworks where there are substantial fixed costs of financinl distress,
continuity is lost and, for this reason, one would expect to obtain more opaque results: for example,
the lack of & unique clearing vector even when mild regularity conditions, such as thase used in this

paper, are imposed.

The most difficult direction of extension would be to allow for more than ane clearing date, and
thus incorporate true dynamics. In principle the extension is straightforward and would preceed as
follows. First, sllow for intercorporate equity and assume that nodes that default at a piven date
become wholly owned by their creditors from thet date forward. Next, allow all nodes to borrow
from & node outside the system that itself is not subject to defanlt risk. The outside node, or
“central bank,” would provide funds st & competitive rate, Thus, nodes would only default when,
at the clearing vector, the value of future inflows is less tha.n the value of liabilities. Using this
motif, and backward induction, ane could recursively solve for clearing vectors. Uncertainty eould
be introduced into this fremework by recursively computing the expected value of future inflows in
order to determine the current economic value of the node and thus solve the default problem for
successively earlier periods. Of course, this sort of extension of our analysis, through the “curse of

dynemic programming” would greatly increase the complexity of the analysis.
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Bloomberg Open Symbology Introduces New Operational Efficiencies and
Cost Reductions for the Trading Community

Chaos theory has nothing on the complexity generated everyday by the millions—perhaps billions—of security
transactions that cross trading floors, clearinghouses and exchanges all over the world. Almost every aspect of
securities management is based on closed systems that use proprietary identifiers that are privately owned and
licensed. Closing each deal is as much an exercise in translation as it is in transaction processing, as traders,
investors and brokers wrestle with multiple proprietary formats to determine what a security is, who owns it, how much
it is worth, and when the deal should be closed. It introduces a tremendous amount of friction into the trade lifecycle
and creates opaqueness where clarity is sought. In addition, the use of proprietary identifiers adds significant cost and
overhead when users wish to integrate data from disparate sources or migrate to a different market data system.

Symbols are essential to the securities industry. Each one uniquely identifies a specific security instrument, just as a
VIN number uniquely identifies every motor vehicle. Symbols are used to research and trade securities, assess risk,
manage portfolios, and manage settlement and clearing.

Even though there are national numbering agencies that create unique identifiers, symbol sets have evolved in
complexity over the years to match the growing sophistication of the products they describe. Sets must be extended
and created to catalog levels of granularity in symbology that a single ID simply can't capture. For privately traded,
over-the-counter products, there may be no proprietary ID available.

The evolution of advanced symbologies has helped the securities industry grow, but the limitations and costs imposed

by the closed systems have become more apparent as companies and institutions continue to integrate operations on

a global scale. Proprietary symbology now stands as one of the most significant barriers to increased efficiency and in-
novation in an industry that sorely needs it. Moreover, the lack of common identifiers is a key roadblock to achieving the
holy grail of straight-through processing (STP).

* Licensing fees require firms to pay for each symbol system they use. International firms bear an especially
heavy burden, because they often have to license several symbologies in order to manage trading operations
in several countries.

* Restrictions imposed by proprietary symbologies prevent companies from easily mapping one set of codes to
another. This hinders integration of market data from diverse sources as well as efforts to automate trade and
settlement activities.

* Market data consumers who adopt proprietary symbols for use in their own systems must not only pay licensing
fees, but such symbols also lead to significant future costs associated with efforts to connect to emerging
trading systems.

* Proprietary trading environments may have worked well for years; but they are a byproduct of a time when data
systems operated largely as islands that did not have to interoperate with other systems.

Current trends dictate a different approach. Markets, customers and governments are demanding greater
connectivity, transparency and efficiency. What's more, the openness of Internet-based systems has profoundly
altered the way businesses—and individuals—collect, manage and share information. Thus, in addition to new
regulations that demand clarity and accountability, the move to open symbology is being driven by growing investor
and institutional demands.

Adopting an open system of shared symbology establishes the foundation for a tremendous leap forward in the
efficient trade and settlement of securities. Such a system will allow firms and technology service providers to shift
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resources from laborious, inefficient processes to new investments in tools and products that will better serve clients.

An open system answers the call for greater transparency. Eliminating the need to remove proprietary IDs and re-map
securities will greatly simplify the steps needed to migrate between market data platforms and trading systems.
Availability of a central symbology reference will facilitate mapping between users’ internal systems and create
opportunities for integration and automation of the global enterprise.

In response to the market demand for open systems and symbology, Bloomberg has released Bloomberg Open
Symbology (“BSYM?") identifiers and has dedicated these identifiers to the public as set forth at the BSYM web
site (bsym.bloomberg.com). BSYM is now available as a non-proprietary, open, security identification system that
anyone can adopt. BSYM offers any company involved in securities trading a number of advantages over closed
and costly systems.

* BSYM is a universal securities symbology that offers companies the potential to streamline internal management
functions and reduce costs associated with maintaining multiple symbology systems.

* BSYM can be used independently of any Bloomberg product or system and there is no limit on the term of the
license, so users will never be required to pay for or remove BSYM identifiers from their systems.

* BSYM can be applied in many unique ways. For example, a middleware tool built on BSYM would create a bridge
between companies using proprietary systems, allowing them to speak in a common language without the need to
license additional symbologies. This creates significant cost savings through reduced licensing fees and automated
processing for all participating firms.

* BSYM can be used for any purpose and incorporated into any system now and in the future. Systems built on BSYM
symbology will never be required to pay licensing fees for its use.

* BSYM will greatly reduce the cost associated with changing platforms, allowing companies the freedom to select
systems that best suit their needs.

The call from the market for systems that encourage innovation and efficiency couldn’t be clearer. Bloomberg is com-
mitted to delivering the tools and standards that will help the securities industry enjoy a new era of advancement.

BSYM is not a single identifier. It is the name for Bloomberg's family of security identifiers. The BSYM identifiers allow
trading and market data systems to cross reference security identifiers from various sources and various Bloomberg
data products. Toward that end, Bloomberg is allowing BSYM Identifiers to be freely reproduced, distributed,
transmitted, used, modified, built upon, or otherwise exploited by anyone for any purpose at no cost. Indeed,
Bloomberg is encouraging all members of the trading community to use BSYM identifiers for integration and
redistribution within and beyond their organizations.

BSYM identifiers available at bsym.bloomberg.com can be used to map data across all of Bloomberg's raw data
products, and they can also be used to determine the ‘parse key’ for loading a security on the Bloomberg Terminal
command line. BSYMs can be searched by many proprietary IDs, such as the Stock Exchange Daily Official List
(SEDOL), Committee on Uniform Securities Identification Procedures (CUSIP), and the International Securities
Identification Number (ISIN), as well as by security description, security type, and pricing source.
Bsym.bloomberg.com also provides predefined dump files and searches, as well as custom search and filter
capability. All data is refreshed on a daily basis.

Expanded security coverage, additional Bloomberg Identifiers, and additional mechanisms for searching and requesting
data will be added as needs are defined.

For the purpose of BSYM, a security is defined as an issue that may be priced by multiple pricing sources—such as
IBM's common stock, and the 10 Year US Treasury Bond. An Instrument is defined as a security that is pricing or
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trading in a specific venue — such as NYSE, AMEX, US Composite, a specific broker-dealer, or Bloomberg Generic
Pricing. Instruments are identified at the level of their market price (Ticker + Pricing Source, BSID). Securities are
identified at the level of the issue itself (Unique Identifier, Name).

Name Name of the company or brief description of the security. The Name of an instrument may change
in conjunction with corporate actions.

Unique ID Unique identifier assigned by Bloomberg to all securities. This id can be used for mapping B-Pipe
and API identifiers to Bloomberg's Data License products. Data License provides extensive funda-
mental and security master data that complements Bloomberg's real time data offerings. The Unique
ID can also be used to load a security onto the Bloomberg Terminal by prefixing the value with ‘ID’
on the command line. In general, for equities, the Unique “ID" groups together instruments that
contribute pricing to the same composite market (e.g. US, JP). However, an exception to this rule
occurs when the same security trades in different currencies in the same market, rendering the
trading instruments nonfungible. In these cases, securities will have a different Bloomberg Ticker
and Unique ID for each currency in which the security trades. MiFID OTC markets are a good
example of this (see examples below). For fixed income securities, the Unique ID identifies a
security across all dealers and currencies, so the Unique ID is not an indicator of fungibility or
participation in a composite for fixed income. The Unique ID of a security may change in
conjunction with corporate actions.

Security Type  Description of the specific security type within its Bloomberg market sector (Yellow Key). This
classification corresponds to the predefined list of files that are available on the BSYM website.
Mappings from Market Sector to Security Type are available on the Web site under the ‘Security
Type Mapping’ link.

Market Sector Market sector that Bloomberg has assigned to the security. This corresponds to the Bloomberg
Yellow Key.

Pricing Source Acronym or short code for the market data source, used on the B-Pipe feed. This field provides
B-Pipe source codes for a variety of asset types. Note that in some cases the source in this field
is not loadable on the terminal. B-Pipe makes a distinction between sessions in the source field,
while the terminal handles this by means of the PCS <G O> function, which allows configuration
of user-specific session preferences. In general, for markets that have electronic, pit and combined
sessions, the pit session will use the source code found on the terminal: the electronic session will
use that code prefixed by “e”, and the combined session will use the source code prefixed by “c’.
In addition, B-Pipe assigns a source code for indices that are not used on the terminal, e.g. DJI for
Dow Jones pricing the INDU index. Pricing Source is currently available only for B-Pipe priced
securities. See the “Pricing Source Descriptions” link on the BSYM Web site for a mapping of the
Pricing Source code to a description of the source.

BSID (Bloomberg Security ID Number with Source) - Unique integer identifier for all B-Pipe securities.
This identifier is used for subscription services in B-Pipe (Managed and On Demand). BSIDs are
unique at instrument level and have a 1-many mapping with the Unique ID field described above.
The BSID of a security may change in conjunction with corporate actions and is available only for
B-Pipe priced securities.

Ticker Unique B-Pipe ticker symbol. Combined with the Pricing Source and Market Sector, this forms a
loadable security string on the Bloomberg terminal for most securities. The ticker may change in
conjunction with corporate actions and is available only for securities that are priced on B-Pipe.
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The rules for forming the BSYM Ticker vary according to security class.

CURRENCY For basic cross rates B-Pipe uses the I1SO codes for both currencies.
Due to the wide variety in type and the desire to keep them short currency derivative symbols are
not so clear-cut. They tend to be based on the ISO codes, but they are often truncated. They can
also be based on the futures exchange codes such as ED, BP, SF, etc. The type of derivative is often
included as an abbreviation, and although the use of the abbreviation is consistent for the derivative
it is difficult to predict. Time periods are almost always included when relevant.
Spot (implied cross rate against the US dollar) currencies are not available. Instead you have to ask
for explicit cross rate, e.g., instead of using “EUR" or “"JPY" use "EURUSD" or “JPYUSD".
EQUITY Equity symbols are usually the exchange ticker.
FIXED INCOME | Fixed income symbols are built by combing a root symbol, the coupon, the maturity date and
an optional series.
A zero coupon is represented by “0”, e.g., “PEISTP 0 01/29/23"
A floating coupon is represented by “F”, e.g., “CNC F 12/04/13"
A variable coupon is represented by preceding the coupon with “V”, e.g.,
“MQB V5.75 02/18/13 1"
Loans are represented by “L" | in the coupon position, e.g., “C L 05/01/98"
A perpetual instrument is represented by preceding a pseudo maturity date with “P”, e.g.,
“BMO 5.474 P12/29/49 D".
The month, day and year of maturity dates are always two digits, 0 padded if needed.
Pseudo maturity dates are often “12/29/49".
FUND For exchange traded funds the symbol is usually the exchange ticker.
Other fund symbols are mnemonics or acronyms built from the description of the index.
FUTURE Future symbols are based on the exchange ticker.
Physical, financial and currency futures symbols use a one, two or three character root for the
commodity followed by the standard month letter and single last digit of the year. If the commodity
code is a single character, such as “W", it is padded with a space so that it is always two characters
INDEX Major exchange indices usually use the common symbol, but the source is not always obvious, e.g.,
B-Pipe subscriptions “/DJI/INDU Index”, “/OPRA/SPX Index"”, “/JT/TPX100 Index".
Other index symbols are mnemonics or acronyms built from the description of the index.
OPTION For future options use the ticker of the underlying future with a “P" or “C" appended, a space and
then the strike price, e.g., “"CDM8C 99.5"
For equity options use the ticker of the underlying equity, a space followed by the month or month/
day of expiration, a space and then a “C” or “P” with the strike price appended. E.g. “IBM 10 C140".
All strike prices drop trailing Os and decimal points, e.g. ,“15.15" is “15.15"” but “15.10” is “15.1” and
“123.00" is "123".
WARRANT For listed warrants with an official exchange symbol, the exchange symbol is used.
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BSYM identifiers can be used to map real time data from B-Pipe or Bloomberg's Server API to Bloomberg's Data
License reference data and corporate actions products.

Field ID (FLDS) Field Mnemonic (DL / API)

DS002
ID059

DS213
DS122
DY003
DX282
ID122

NAME
ID_BB_UNIQUE
SECURITY_TYP

MARKET_SECTOR_DES
ID_BB_SEC_NUM_DES

FEED_SOURCE

ID_BB_SEC_NUM_SRC

B-Pipe Field

Reference.Security.ID.Name

Reference.Security.Bloomberg.UniquelD

Reference.Security. Type

NA*

Reference.Security.|D.Bloomberg.Symbol

MD.Source

MD.Security.ID.BSID

*Reflected in the message type of the B-Pipe reference data message

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

IBM us Composite)

IBM (NYSE)

IBM (German Composite)

BSYM Field
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

IBM (Berlin Exchange)

INTL BUSINESS MACHINES CORP  INTL BUSINESS MACHINES CORP INTL BUSINESS MACHINES CORP  INTL BUSINESS MACHINES CORP

EQ0010080100001000
Common Stock
Equity

IBM

us
399432473346

EQ0010080100001000
Common Stock
Equity

IBM

UN
627065740034

EQ0010080100001007
Common Stock
Equity

IBM

GR
395137622225

EQ0010080100001007
Common Stock
Equity

IBM

GB
1623498268881

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

LLOY (London Listed - GBp)
LLOYDS BANKING GROUP PLC
EQ0011242800001000

Common Stock
Equity

LLOY

LN
678605350662
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LLOY (PLUS - GBp)
LLOYDS BANKING GROUP PLC

EQO0000000005037071
Common Stock

Equity
LLOY
Pz

1997163581670

LLOY (Chi-X - GBp)

LLOYDS BANKING GROUP PLC
EQ0000000002865282
Common Stock

Equity

LLOY

IX

2005750482138
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Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

LLOY (London OTC - GBP)
LLOYDS BANKING GROUP PLC
EQ0000000005002180
Common Stock

LLOY (chi-x OTC - GBP)

LLOY (London OTC - Euro)
LLOYDS BANKING GROUP PLC LLOYDS BANKING GROUP PLC
EQO0000000005002180 EQO000000005103164

Common Stock Common Stock

LLOY (Chi-X OTC - Euro)

Common Stock

Equity Equity Equity Equity
LLOYGBP LLOYGBP LLOYEUR LLOYEUR

XJ XC XJ XC
6111741723983 6064497083727 6111741807243 6064497166987

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

LCJO PIT (CME)

LIVE CATTLE FUTR Apr10
IX8013948-0

Physical commodity future.
Comdty

LCJO

CME

614188830019

LCJO ELEC (CME)

LIVE CATTLE FUTR Apr10
IX8013948-0

Physical commodity future.
Comdty

LCJO

eCME

2078772677955

LCJO COMB (CME)

LIVE CATTLE FUTR Apr10
IX8013948-0

Physical commodity future.
Comdty

LCJO

cCME

9981512502595

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

Daimler May 2010 (LIFFE)
DaimlerChrysler AG May10
EF12666074700074186777
SINGLE STOCK FUTURE
Equity

DCX=K0

LIF

609900809283

Daimler May 2010 (Eurex)
DaimlerChrysler AG May10

EF12399952420074448897

SINGLE STOCK FUTURE
Equity

DCX=K0

EUX

279182846813

Daimler May 2010 (Milan)
DaimlerChrysler AG May10
EF12666075260074186844
SINGLE STOCK FUTURE
Equity

BDCX=KO0

SM

476756828955

Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

GS 7.5 02/15/19 (TRACE)
GOLDMAN SACHS GROUP INC
COEH7068206

GLOBAL

Corp

GS 7.502/15/19

TRAC

631369281816
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GS 7.502/15/19 (German Composite)

GOLDMAN SACHS GROUP INC
COEH7068206

GLOBAL

Corp

GS 7.502/15/19

GR

395146080536

GS 7.5 02/15/19 (cBBT)
GOLDMAN SACHS GROUP INC
COEH7068206

GLOBAL

Corp

GS 7.502/15/19

CBBT

665729020184

LLOYDS BANKING GROUP PLC
EQO0000000005103164
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Column Heading FNCL 4 4/10 (Bloomberg Generic) FNCL 4 4/10 (Composite Bloomberg Bond Trader)
Name FNCL 4 4/10 FNCL 4 4/10

Unique ID MG%3278ACK MG%3278ACK

Security Type MBS 30yr MBS 30yr

Market Sector Mtge Mtge

Ticker FNCL 4 4/10 FNCL 4 4/10

Pricing Source BGN CBBT

BSID 12894812880 665729841872

Column Heading RBS CAPITAL FND TRST VII (US Composite) RBS CAPITAL FND TRST VII (NYSE Preferred) RBS CAPITAL FND TRST VI (US Composite) RBS CAPITAL FND
TRST VI (NYSE Preferred)

Name RBS CAPITAL FND TRST VII RBS CAPITAL FND TRST VII RBS CAPITAL FND TRST VI RBS CAPITAL FND
TRST VI

Unique ID PFEP0109264 PFEP0109264 PFEP0093955 PFEP0093955
Security Type PUBLIC PUBLIC PUBLIC PUBLIC
Market Sector Pfd Pfd Pfd Pfd

Ticker ABNA 6.08 P12/31/49 G ABNA 6.08 P12/31/49 G ABNA 6.25 P12/31/49 F ABNA 6.25
P12/31/49 F

Pricing Source  US SNY1 us SNY1

BSID 399432238302 618475570398 399432238212 618475570308
Column Heading T 7.5 11/15/24 (Standard Chartered) T 7.5 11/15/24 (Citigroup) T 7.5 11/15/24 (Credit Suisse)
Name US TREASURY N/B US TREASURY N/B US TREASURY N/B

Unique ID * * *

Security Type US GOVERNMENT US GOVERNMENT US GOVERNMENT

Market Sector Govt Govt Govt

Ticker T7.511/15/24 T7.511/15/24 T7.511/15/24

Pricing Source SCBX CGUK CSFB

BSID 12004433733107 5063766582771 5059471615475

* In some cases Unique ID is blank due to the value being based on a proprietary ID. New IDs are being assigned and will be updated soon.

Column Heading USD-EUR X-RATE (Tokyo Composite) USD-EUR X-RATE (New York Composite) USD-EUR X-RATE (CBA Bank) USD-EUR X-RATE (8am Fixing Rate)
Name USD-EUR X-RATE USD-EUR X-RATE USD-EUR X-RATE USD-EUR X-RATE
Unique ID 1X430979-0 1X430979-0 IX430979-0 IX430979-0

Security Type CROSS CROSS CROSS CROSS

Market Sector Curncy Curncy Curncy Curncy

Ticker USDEUR USDEUR USDEUR USDEUR

Pricing Source CMPT CMPN CBAX F080

BSID 425201809525 416611874933 12648678733941 14289356241013
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Column Heading
Name

Unique ID
Security Type
Market Sector
Ticker

Pricing Source
BSID

June 10 Puts on SPX (US Composite)
June 10 Puts on SPX
IX6956513-0-1400

Index Option

Index

SPX 06/19/10 P800

us

399438708018

June 10 Calls on SPX (US Composite)
June 10 Calls on SPX
I1X6956509-0-9400

Index Option

Index

SPX 06/19/10 C800

us

399438708043

Column Heading April 10 Calls on VOD US (US Composite)

Name April 10 Calls on VOD US April 10 Calls on VOD US
Unique ID EO1016052010040181900001 EO1016052010040181900001
Security Type Equity Option Equity Option
Market Sector  Equity Equity

Ticker VOD 04/17/10 C12.5 VOD 04/17/10 C12.5
Pricing Source  US UA

BSID 399444460111 523998511695
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April 10 Calls on VOD US (AMEX) April 10 Calls on VOD LN (LIFFE)
April 10 Calls on VOD LN

EO101605201004038DC00006

Equity Option Equity Option

Equity Equity

VOD 04/16/10 C110  VOD 04/16/10 C120
EUX

609900043157 279187460380

April 10 Calls on VOD NQ (EUREX)
April 10 Calls on VOD NQ
EO101605201004028F000002



Bloomberg

CAST <GO>

CAPITAL STRUCTURE ON BLOOMBERG

Use CAST <GO> to display a selected company's liabilities and the amount owed to investors at each level
of the company's capital structure.

This provides transparency into how creditors may be paid in the event of the company's bankruptcy.
Typically, secured lenders are paid first, followed by senior unsecured lenders, subordinated lenders, junior
subordinated lenders, and finally, shareholders. CAST also displays information on the corporate structure
of the company, such as the subsidiaries.

HOW TO ANALYZE CAPITAL STRUCTURE

for explanation, for similar functions. EquityCAST

AIG US Eqty American International Group Inc Capital Structure
[el= I | incar Scale [~ |
1) First Lien Loans 60,000MM
2) Unsecured Loan 1,625MM
3) Other Debt:Secured 9,070MM |
4) Senior Unsecured Debt 31,256MM
5) Other Debt:Senior Unsecured 1,355MM |
6) Junior Subordinated Debt 18,026MM
7) Other Debt: Junior Subordinated 1,339MM |
8) Other Debt:Non-Disclosed 1,902MM |
9) Insurance and Investment Contract Liabilities 728,184MM
42,755MM

Eqty Price: 36.05 X
Debt Tkr |Eqty Tkr CDS Tkr -

AIG__JAIG US I 110,907
2 2187 JY

ASTF 11
-AIG SunAmerica Global Financing VI
EFAIG Life Holdings US Inc
American General Institutional Capital B
American General Institutional Capital A
-American General Capital II

‘ Choose an applicable security and enter CAST <GO>.

To filter the debt by currency, choose the appropriate option from the amber dropdown to the right
of CURRENCY. To display the graph with a Log Scale or Linear Scale, choose the appropriate
option from the amber dropdown to the right of GRAPH.

To view the underlying individual securities or as-reported financial data, click on the data label or
the accompanying shaded bar.

Additional elements of the company's corporate structure are displayed in the lower half of the
screen. Clicking on [-] or [+] to the left of the appropriate category will collapse or expand each
category.



Display Security Detail Information

TOLL BROTHERS Equity Recent b Related - Favorites . Export v Terminal " Help

for explanation, for similar functions. Hiiager-S=u gl Clicking on a data

TOLUS  Eqt Toll Brothers I " Capital Struct label or shaded bar on
0 rothers Inc apita ructure .
- pr o Lnear e the Capital Structure

1) Unsecured Loan 1,892MM screen will open either
2) Other Debt:Secured Debt Guarantees sommM ||

3) Senior Unsecured Debt 1,600MM a SeCU”W Detall

4) Senior Subordinated Debt 50MM Screen or FA<GO>.
: M

Unsecured Loan
tched 2 Securities

Toll Brothers Inc

Capital Structure
e H- H Min Amount (M)

M -

Ticker Tranche| Ma (i ) atus rncl 1 (M) S& Moody':

FA<GO> from CAST will display the company’s
financial history, indentify trends and gain data
transparency to assist in analyzing the value of a
potential investment, partnership, or acquisition.

LN LR LR LR

How to Interpret Bar Chart Colors

Green: Debt included in the Yellow: Debt disclosed in company Orange: Insurance and
BLOOMBERG PROFESSIONAL® filings, but not included in Bloomberg's investment contract liabilities that
service's security database. security database. The data displayed are disclosed in filings.

has been confirmed by the company.
Aqua: Preferred shares.

[ i B ] i ] i fl—
YT Rt ¢ Reted | Fovoites <) Bgort | Temind  ¢| Hep

Purple: Data that comes from

for explanation, for similar functions. SNWIR N  financial filings, such as operating
and/or capital leases, deposits,
TOLUS  Eqty Toll Brothers Inc Capital Structure pension obligations, and accounts
Currency (CE N inear Scale |l payable.
1) Unsecured Loan 1,892MM
2) Other Debt:Secured Debt Guarantees somm | Pink: Municipal debt.
3) Senior Unsecured Debt 1,600MM
4) Senior Subordinated Debt SOMM Blue: Represents the market
5) _ capitalization as of the previous
6) Pensi : | day's close.

7) Oper:
8) Market Cap Eqty Price: 19.18 - 3,094
9) Secured Non-recourse,Non-disclosed debt

Violet: Represents asset-backed
and mortgage-backed debt that is
part of Bloomberg's security

database.
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Summary. We consider default by firms that are part of a single clearing mechanism. The obliga-
tions of all firms within the system are determined simultaneously in a fashion consistent with the
priority of debt claims and the limited liability of equity. We first show, via e flxed-point argument,
that there always exists a “clearing payment vector® that clears the obligations of the members
of the clearing system; under mild regularity conditions, this clearing vector is unique. Next, we
develop en algorithm that both clears the financial network in a computationally efficient fashion
and provides information on the systemic risk faced by system firm. Finally, we produce qualitative
comparative statics for financial networks. These comparative statics imply that, in contrast io
single-firm results, unsystematic, nondissipative shocks to the system will lower the total value of
the network and may lower the value of the cquity of some of the individual network firms.

We would like to thank the particpants in the 1999 Thscrete Mathematics and Computer Science
Conference on New Market Models for many helpful comments on an earlier draft of this paper.
Comments by Isasc Sonin and Tomaz Slivnik, were particulary appreciated. The usual disclamer
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Systemic rigk in financial networks

1 Imtroduction

One of the most pervasive aspects of the contemporary financial environment is the rich network
of interconnections among firms. Although financial lishilities owed by one firm to another are
usually modeled as unidirectional obligations dependent only on the financisl health of the issuing
firm, in reality, the liability structure of corporate obligations is invariably much more imtricate.
The velue of most firms is dependent on the payoffs they receive from their claims on other firms.
Thavalueofthmeclaimsdepen&s,intum,antheﬂnancialhealthafyesotherﬂrmsin the system.
Moreover, linkages between firms can be cyclical. A default by firm A on its obligations to firm B
may lead B to default on its obligations to €. A default by C may, in turn, have a feedback effect
on A Thus, financial system architectures may exhibit cyclieal dependence in interfirm obligations,
We consider the problem of finding a clearing mechenism in ceses in which this sort of cyclical
interdependence is present.

All markets have some kind of clearing mechanism. Perhaps clearing mechenisms for inter-
bank payments and for listed exchanges have recsived the most attention. In the United States, for
example, CHIPS and Fedwire are the main banking clearing mechanisms; in Germany, the Abrech-
ming and the EAF (Elektronische AY) rechnung mit Filetransfer) performs this function. Regarding
clearing mechanisms, one of the attractions of trading on a listed options exchange, the CBOE for
example, is that the Options Clearing Corporation is the counterparty to every trade. Hence credit
considerations do not prohibit lower credit traders from participeting in these markets. These pay-
ment, systems are forced to confront large defaults on a reguler basis, Examples of such defaults
include the failure of I.D. Herstatt in 1974 and the Bank of New York overnight shortfall of $22.6
hillion dolliws in 1985. System-wide meltdowns also occur. For example, consider the collapse of the
Tokyo real estate market, the bankruptcy and public bailout of American S&Ls to the cast of about
$500 bﬂ]iﬁndollarsa.nd the Venezuelan bank erisis of 1984. One of the most interesting failures of

a tightly interconnected clearing system was the 1882 collapse al-Manakh Stock Market in Kuwait.
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The clearing system, consisting of approximately 29,000 post-dated checks written by traders, ¢ol-
lapsed after a 40 percent drop in merket values. The nominal gross liabilities of the participants
in the market to each other at the time of the collapse was more than four times Kuweit's GDP

{Eliman, Girgis, and Kotob, 1997).

Surprisingly, despite the obvious importance of the “architecture of financial linkages® for deter-
mining the return-generating process for financial assets, little has been written on cyclical financial
interconnections, Bilateral clearing has been throughly anslyzed in Duffie and Huang (1996). Ro-
chet and Tirole (1996) analyzed the incentive and monitoring impact of an interbank loan. From
a mare empirical perspective, Angelini and Russo (1996) develop an empirical model of infercon-
porate defanlts. In this model, the probability that & default by one firm triggers ancther firm’s
defenlt is exogenously spetified without modeling intereorporate cash flows, Eliam, Girgis, and Ko-
tob (1997) report the actual procedure used to clear infercorporate debts after the Kuwaiti stock
market crash. However, to our knowledge, this paper is the first to analyze, in a general fashion,
the properties of intercorporate cash flows in financial systems featuring cyclical obligations aud

endogenously-determined clearing vectors.

T'his lack of attention to cyclicality is even more surprising given the extensive literature mod-
ding default in a simple unidirectional and bilateral context. In fact, the whole literature on term-
structure of interest rates ignores Lhe congiderations mentioned above, While modeling the valnation
of a firm’s debt as independent from that of other firms simplifies debt and equity models, this as-
sumption becomes questionable in portfolio management, corporate bond trading and the analysis
of counterparty credit risk. The aim of this paper is to investigate the propagation of risk through
clearing systems and the effects of this risk propagation on the return-generating process of system-
perticipants. A desideratum for the future qevelopmmt of these lines of research is the developrnent
of a simple, tractable model for computing clearing vectors for intralinked financial systems. The

aim of this paper is to provide such a mode].
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We develop a fairly general model of e clearing systern. The model satisfies the standerd
conditions on clearing vectors imposed by bankruptcy law: proportional repsyments of liabilities
in default, limited liebility, and absclute priority. We shell show, via a fixed-point argument, thet
there always exists a “clearing payment vector,” consistenf with these conditions, that specifies
the payment made by each node in the system. Moreover, under mild regularvity conditions, this
clearing vector is unique and may be characierized in two weys, First, it is the limit of a finite
sequence of clearing vectors produced by “fictitious sequential defanlt” algorithm, This algorithm,
as well as quickly yielding the clearing vector, produces & natural metric for examining the systemic
risk exposure of firms in the financial system. Second, the clearing vector maximizes the weighted
average of firm payments regardless of weighting scheme, Qur results demonstrate thet any clearing

payment vector maximizes both the cents-on-the-dollar repaid and the total repayments to creditors.

After analyzing the clearing vector, we perform comperative statics on the clearing peyment
vector, determining the nature of its dependence on the vector of exogenous cash infusions es well
#8 on the architecture of financial liabilities linking the various members of the system. More
specifically, we show that the clearing payment vector is a multidimensional conceve function of
operating cash flows and the level of nominal payments, and that the value of equity is not generally
convex in cash flows. These results imply that the total value of firms in the system is concave in
exogenous cash flows. In turn, this increased concavity implies that increased volatility, by lowering
expected interfirm payments, will lower the total value of nodes in the system, even though there are
no costs to insolvency in our model. (And thus the real economic effect of such & shock is nil.) Our
results suggest that using changes in (ote] asset values to measure the effect of an economic shock

on a group of tightly interconnected companies ( e.g., Japanese banks) can be highly misleading.

The paper is organived as follows. In Section 2, we present the model and develop the basic
machinery, including existence uniqueness results. In Section 3, we present the two characterizations
of the clearing vectors and examine their consequences. In Section 4, we derive comparative statics

of the clearing system. Section 5 concludes the paper and considers some extensions,
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2 Framework and basic resuits
2.1 Preliminaries

Let 3 represent n-dimensional Euclidean vector space. Let M = {1,2,..n}. For any two

vectors z, ¥ € R®, define the lattice operations
z Ay = (min[zy, y1], min(za, ya] . . . w20, ya])

zVy = (mexfzy,y ], mex[zs, ¥2] . . . maxX[Ty; Y]
Let 1 represent an n-dimensional vector, ell of whose components equal 1, e, 1 = (1,...,1).

Similerly, let O represent an n-dimensional vector, all of whose components equal 0. Let [« [|; denote

the #£-narm on £7. That is, for ench =z € R° lei,

lzfia 2= Jal.
=1

For each n x n matrix, M, let p{ M) represent the spectral redius of the matrix, the eigenvalue of the
matrix of maximal absolute value. With each livear transform defined on R™ there is an associated
n x 7 matrix M. Let |[| - [|]; be the operator matrix Norm associated with || - {[;. That is, for each
n X i matrix, define

|M]fiy = Sup ||Mz]].
ll=lly $1

It is well known that [e.g., Horn and Johnson {1985) §5.6.4, page 284) that, for any n x n matrix M,

we have
Ml = Mas 3 jossl
B T §

An important definition for our future analysis is of a non-expaasive map. A map T:R" — R is
(€!)-nonexpansive if, Yo € R®,

IT(=) — Tl < Iz — 9l

Whenever an ordering of elermnents of R™ is specified in the sequel, the ordering refers to the pointwise

ordering induced by the lattice operations, i.e.,

Ty <= m;<yforallie N,
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2.2 Economic framework

Consider an economy populeted by » nodes. Each of these nodes is to be thought of a distinet
economie entity, or “financial node” participating in the clearing network. Each such entity may have
nomins] liabilities to other entities in the system. These nominal liabilities represent the promised
payments due to other nodes in the network. We represent this structure of liabilities with the n xn
nominal Habilities matrix L, where Ly represents the nominal Hability of node ¢ to node 7. As the
notion of nominel cleims seems to imply, we assume that all nominal claims are nonnegative and
that no node has a nominal claim against itself In order to reflect this economic interpretation, we
specify that the nominsl liabilities meirix is non-negative and that all of the diegonal elements of
the matrix equal 0; that is, we assume that Vi,j € N, Ly > 0 and that Vi, Ly, = 0. Let e; > 0
be the exogenous operating incame received by node 7 from sources “outside” the clearing system.
Operating income can be viewed as the cash flows thrown off by the real assets controlled by the
node. A financial system is thus a pair (L, e), consisting of a nominal obligations matrix, L and an

operating income vector e, satisfying the conditions given above.

Let p; represent the total dollar payment by node ¢ to the other nodes in the system. Let
P = (p1,P2, . -« Pn) Yepresent the vector of total payments made by the nodes. Let J; represent total

nominal obligation of { to all other nodey, that is,

=) Lig. (1)
i=1

Let 5 = (P1,P9;...,5n) represent the associated vector, which we will term the total obligation
vector. This vector represents the payment level required for complete satisfaction of all contractual

liabilities by all nodes. Lot

I = {0%" o @)
and let II represent the corresponding mafrix, which we will term the relative liabilities matrix. 'This
medrix captures the nominal liability of one node to another in the system as a proportion of the
debtor node’s total liabilities. We sssume that ali debt claims have equal priority. This equality of

priority implies that the payment made by node { to node j is given by p;IL;;. This implies that the
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the totel payments received by 1 are equel to 3.5, TITp;. Further, ell payments are made to some

node in the system and therefare,
7
Vi, Z]Ing =1
F=
or, in matrix notation,
=1,

an equelity we will use later in the analysis.

The total cash flow to the owners of the equity of node ¢ equals the sum of the payments recaived
by other nodes plus the operating income less the payments made to #'s creditors. ‘This implies that

the value of node i equity equals

Ergjpj-l-e«;—pg.

=1

Note also that, by using (1) and {2), the financial system {L,e€), where L is a nominal payments
matrix and e is a vector of operating incomes, can be equivalently described by the corresponding
triple (II,5,e), where II is a relative liabilities matrix, § is a total liability wector and, e is an

operating income vector. We will this descriplion of a fiuancial system in the suhssquent analysis,

Intuitively, a clearing payment vector for the financial system should represent a specification
of the payments made by each of the nodes in the financial system that is consistent with the legal
rules allocating cash flows among nodes and among holders of debt and equity. Three criteria which
must be satisfied are {a) limited liabilily, which requires that the total payments made by & node
must never exceed the cash flow available to the node, (b) the priority of debt claims, which requires
that stockholders in the node receive no value until the node is able to comnpletely pay off all of its
outstanding liabilities, and (¢) proportionality, which requires that if default by occurs, all claimant
nodes are paid by the defaulting node in proportion to the size of their nominal claim on firm essets.

These desiderate motivate the following definition.

Definition 1. A clearing payment vector far the financial system (I1,5,¢) is a vector p* € [0, 7]

that satisfies the lollowing conditions:
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Fignre 1. A Financisl System

The ahove diagram depicts a financial system. The system consists of 4 nodes labeled 1,2, 3, and 4.
Beside each node is a record of the operating income it recelves (e} and the totel payments, 7, it
is contracted to make with the other nodes in the system. The arrows between nodes indicate that
the source node hes en obligation to the target node. When such an obligation exists between two
nodes, say £ and j, the label IL;;, denoting the proportion of i's total lisbilities that are attributable
to debts to 4, is placed beside the arrow.

8. Limited Liability. Vi € N,

n
7 <D g +es.

=1

b. Absolute Priority. Vi € N, either obligations are paid in full, that is, pf = &, or all cash flows
are paid to creditors, that is,

;=Y TG} +es [

J=1

A clearing payment vector for the financial system llustrated in Figure 1 is provided by the
vector @* = (0.20,0.95,0.20,0.60). This vector calls for Node 1 to pay 0.20 to the other nodes.
Because II;z = 1.0, this payment is received entirely by node 2. Nede 1 receives no inflows from
other nodes in the clearing system; thus, Node 1’s total inflows are given simply by its operating
income of 0.20. Node 1's payment of 0.20 is less than its totel obligations of 1.00. Consistent with
ahsolute priority, the clearing vector €hus requires Node 1 to pay out all of its cesh flows. Node 2's

payment under the clearing payment vector is 0.95, which is Jess than 2's obligeted payment of 1.20,
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Because Ilpg = 1, th;spaymentisreceivedentiralybyNode& Node 2 receives inflows both from Node
1 and from Node 4. The clearing vector calls for Node 4 to pay Node 2 pllas = (0.60)(0.75) = 0.45;
as explained above, Node 1 pays Node 2 0.20. Thus, for Node 2, the total inflows from other nodes
plus operating income equel 0.45 4 0.20 4 0.30 = 0.95. Again, consistent with absolute pricrity, all
of Node 2's inflows are paid out to creditors. Node 3's peyment under the clearing payment vector
is 0.20, which is equal to Node 3's obligated payment. Because Ilgq = 1, this payment: is received
entirely by Node 4. Node 3 receives inflows both from Node 2 and Node 4. The inflow fram Node
2 equals (.95, the payment made by Node 2 under the equilibrium clearing payment vector. The
inflow from 4 equals 0.15, 0.25 of 4's clearing payment of 0.60. Thus, the value of Node 3's equity
is 0.10 -+ 0.95 + 0.156 ~ 0.20 = 1.00. Node 2 receives & payment of 0.60 from Node 4,less than Node
4’s obligated payment of 0.80, 0.15 of this payment goes to Node 3 end the remainder of 0.45 goes
to Node 2. This payment exactly equals 4°'s cash inflow, which consists of operating income of 0.40
and a payment of 0.20 from Node 3. Note thet the financial system being modeled is conservative
in that wealth is neither created nor destroyed by the clearing process. Rather, the elearing process
serves to distribute the 1.00 In operating income, received by the financial system as & whale, across

the nodes. In this case, the entire balance is distributed to Node 3.

£.8 Basic network architecture
Definition 2. A set § C N is a surplus set if no node in the sot has any obligations to any node

outside the set and the set has positive operating income, that is if ¥(7,7) € § x 5%, II;; = 0 and

Ei(fse‘i > 01 H

Lemma 1. If p* is a clearing vector, then it is not possible for all nodes in a surplus set to have

zero aquity valne.

Proof. Suppose S is a surplus set. Let P;¥ represent the sum of all of the payments received by a

node { € § rom nodes in $°. By the definition of surplus set, nodes in § make no payments to
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nodes in 5°. Thus, if &1l nodes in 5 have zero equity value, it must be the case that

P5=ZHE;PJ+8¢+I?Z wes, (3)
jes

Summing the equations specified in (3) over 7 € S thus ylelds

Som=) 3 Uips + Y (B +e). @

@y jed de§ {€8

Using the fact that 8 is a surplus set, we also have that

dYni=1 VieS (5)
ics

Expressions (4) and (5) imply that
0= Z(P:l- + &),
Y}

contradicting our assumption that Y, ge: > 0. a

Establishing existence and uniqueness of clearing vectors requires that we present simple facts
about the “architecture™ of the financial system. The existence of a positive liability connecting two
nodes in the system provides a conduit through which the risk of the debtor node can be transferred
to the creditor, If we abstract from the magnitude of thess exposures, we are left with a description
of the financial system as a directed graph in which each debtor is linked via a directed edgewéach

of his creditors. These ideas are formalized below.

Definitlon 3. The financial structure graph associated with the financiel structure (II, 5, e) is the
directed multigraph whose vertices are the nodes of the financial network, A/, and whose edges are

defined by ¢ — § <= Ty > 0.2 I

The direct liabilities of each node in the system are to the nodes to which the agent has

contractus) obligations. However, these direct links by no means exhaust the set of all nodes that

! The technicel distinction between a directed graph and a directed mmltigraph is that in a directed
graph, there is, at most, one directed edge connecting any two nodes, In a directed multigraph, any

number of edges can connect nodes.



Juno 18, 1999 Cloaring Netwarks 10

are affected by a node’s default. Defaulis cascade through the systers, the default of a single node,
reduces the inflows to its creditors, perheps triggering the default of one of these creditors, and
even, perhaps, defaults further downstream. How far downstream can the risk of a given node in
the system trave]? An upper bound on propagation is provided by the concept of the risk orbit of a
node in the system. The risk orbit of & node is the set of all nodes which are connected to the given
nede through some directed path, however circuitous, through the system.

Definition 4. For each node ¢ € A, define the risk orbit of node i, denoted by o(i), as follows:
o(2) = {§ € N: there exists a directed path from ¢ to 7} 1l

In the fnancial system fllustrated in Figure 1, the risk orbits of the nodes are given as follows:
o(1) = {1,2,3,4} o(2) = {2,3,4}

o8) = {2,3,4} of4) = {2,3,4}.

The strongest sort of systemic interdependency, from the cualitative point of view we are cur-
rently pursuing, is for every node to be in the risk orbit of every other node, that is, for the
financial structure graph induced by the financial system (I, 5, e) to satisfy the following condition:
¥{#,7) € Nx N, i ¢ o(j). When this condition is satisfied we will say the financial system is strongly
interlinked. When a financial system is strongly interlinked, shocks hitting any node in the system,
can be passed, perhaps through some very indirect routes, to any other node in the system. Becasue,
the financial system presented in Figure 1 is not strongly interlinked, shocks to Nodes 2, 3, and 4
cannot affect Node 1. However, simply introducing, say, some obligation of Node 4 to Node 1, wonld

render the system strongly interlinked.

Tt would appear that, because they sbstract from the magnitude of exposures, concepts such
a§ strong connectedness and risk orbils are incapable of providing any useful characterization of
clearing payment vectors for the system. This is not correct. In fact, & very simple property of risk

orbits forms the basis for our proof of the uniqueness of the clearing payment vector,

Lemma 2. Suppose that p° is a clearing vector for (11,5, e), Let o(3) be a risk orbit that satisfies
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3 s¢o(s) & > 0. Then under p* at least ane node of ¢ has positive equity value, that is,

3j € old), such that fi; < (I7p" +€);.

Proof. First note that o(¢) is a surplus set. To see this, note that if some node, say #* in o(f) owed
something to a node j € o3)°, then, by appending to the directed path from £ to # the edge ¥ — j,
one could construet a directed path from i to 7, contradicting the assumption that § is not in of3).

Lemms 1 shows that every surplus set contains & node with positive equity value. a

The Intuition underlying Lemma 2 is clear. No financial “shock” can be absorbed by & bankrupt
node of the financial system. The shock must be transferred, initially perhaps to other bankrupt
nodes, but ultimately through some directed path(s) through the system to a solvent node. In the
example considered in Figure 1, tﬁe lemma implies, sinee Node 3 is the only solvent node, that all
other nodes contain Node 3 within their risk orbits. This is indeed the case, es can be seen from the

risk orbits computed above.

2.4 Existence/Uniqueness of ¢ clearing payment veclor

Limited liability and absolute priority imply thet p* € [0, 7] is & clearing payment vector if and
only if the following condition holds: Vi € NV, -

n
pf = min [81 +j§fﬁ}p;, ﬁ«] -
The clearing payment: vector, p*, is thus a fixed point of the map, ®(-;I1, 8, €): [0, 5] — [0, §], defined
by
O(p;1,5,¢) = (ITp+ ) AG.

An economie interpretation of @ is that ®(p) represunts the total funds that will be applied to satisfy
debt obligations, assuming that nodes receive inflows specified by p from their debt clairs on other

nodes. The basic properties of the ®-map are recorded in the following lemma,

Lewoma 3. The map & is positive, incregsing, coneave, and nonexpansive.
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Proof. The essertions of positivity, monotonicity and concavity follow because @ is the compaosition
of the positive, increasing, affive map ¢ — IITq + e, end the positive, increesing, concave mep
g — g AP, To show that the map is nonexpansive, first note that, for any three vectors =, y, and 2,
leAz—yAzlly < [Jz—yli1. This result implies that [|8(p)—8(@)Il1 = [|((F p+e)Af— (I p"+e)Ap]: <
II¥p— 7P [j;. Next note thet the column sums of II* all equal 1. This implies, from hasic matrix

algebra, that (|07 ]|y = 1. Thus, [TITp— 7|1 < |lp — #/[[1, establishing the result. O

Each of the regularity properties of the ® map has a fairly straightforward interpretation.
The fact that the map is positive just says that as long as inflows from the obligations of other
nodes are positive, the node will itsclf make positive payouts. Monotonicity reflects the positive
interdependence of the links in the financisl system. The larger the payout 8 node received from
other nodes on their debis, the larger the payout the node can itself make to other nodes. Concavity
implies that increasing “dispersion” in the magnitude of the varigtion in payments made across
nodes reduces overall ability to pay. Nonexpansivness reflects the “stability” in the clearing system.
An increase in the input vector to the & map never yields a change in the output vector that is larger
in absolute magnitude than the change in the input. Instead, slthough individual components of
the output vector may grow disproportionatly, the change in the overall cutpul vector is no larger

in magnitude than the change in the input vector.

The previous lemmas form the basis for the first important result of our analysis: & demonstra-
tion of the existence of & clearing payment vector associated with every financial system, end of the

uniqueness of clearing vectors under a fairly weak additionel restriction that we term “regularity.”
Definition 6. A financial system is regular if every risk orbit, o(3), Is a surplus set.

Lemma 4. The following conditions are each by themselves sufficient for a financial system to be
regular: (i) all nodes have positive equity balances or, (ii} the system Is strongly interconnected and

at least one node has a pasitive cash balance.
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Proof. Tt follows directly from the definitions of surplus set and strong interconnection, that (i) and

(i), ensure regularity.

Intuitively, regularity means that any reaximal connected subset of nodes of the financial system
hes some surplus to transfer among the nodes of the system. The corollary shows that this will be
the case whenever the financial systern is strongly interlinked or each node is endowed with some
transferable surplus.

Theorem 1. Corresponding to every financial system (IL 5, €),
a. there exists a greatest and least clearing payment vector, pt and p—.

b. Under all clearing vectors, the value of the equity at each node of the financial system is the

same, that is, if p’ and p” are any two clearing vectors,

(07 (@) +e—p)* = (OT (") +e—p)*.

c. If the financial system is regular, the grentest and least clearing vectar are the same, ie.,

p* = p~, implying that the clearing vector is unique.

Proof Let FIX(®) represent the set of fixed polnts of ®. Because ® is incressing, ®(0) > 0
and B(7) < B, the Tarski fixed-point theorem (ses, e.g., Zeidler (1986) Theorem 11.E) implies that

FIX(®) is non-empty and, moreover, possesses a greatest and least element. Thus (a) is established.

To prove (b) let p’ be any clearing vector. We will show that the value of equity is the same

under p’ and p*. This is sufficient to establish (b).

To show that the value of equity is the same under p’ and p*, first note that II7 is an increasing

map, as is the map £ — =V 0 = zt. Thus, we must have, because pt > p/, that

(I (p*) +e—~p) VO > (T (p) +e—5) VO.
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Thus, if

(" (%) +e—p) VO£ T @) +e—F) VO,
then we would have that

mT(p+)+e—rﬁ)v0§(D“”(p’}+e—ﬁ)v0-

Because p* and p~ are bath clearing vectors, it also must be the case that

M (p*) +e—-MH VO =T (p%) +e—pt,
@) +e—pVvo=IFGp)+e—p.

Expressions (6), (7) and (8) imply thes
HT(p+)+e-—p+§HT(p')+er’.
Now, note thet T11 = 1. This implies that
1- (@G —p*) =1. (0" @) ~#) = 0.

. Thus,

1 () +e—pt) =1 (IT7 (@) + e - 7).

However, (9) implies that

L- (Tt +e—ph) > 1- (M (@) +e— 7).

The contradiction between expressions (10) and {11} establishes (b).

14

(6)

)
®)

(9)

(10)

(11}

Two distinct clearing vectors producing the same equity vaiues at all nodes is not passible if the

financial system is regular. To see this, first note that beceuse pt and p’ are distinet clearing vectors

and ¢’ < p', and because, for all nodes i that have positive equity value p} = p} = fi;, it must be the

case that for some 4 with zero equity value, p; > p).. Regularity implies that the risk orbit of i is &

surplus set. By l.emmas 1 and 2, there exists a directed pathi = ég — 4y — ...

~r 4. —+ 4 = 7 with
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the property that the nodes 4;...4;_1 are zero-equity-value nodes, and ¢; = § is & positive-equity-
value node. Because all cashflows into zero-equity nodes are paid out, iy —+ 3, and p’ < p¥, it
follows that
P, <BL_, = P, <D

Thus, ¥} < pi implies that g, _, < pj _ . Because é_y — # = j. It follows that the payments
receivedbyjamhighm'mdérp*’ then under »’. Since j has positive equity value under both
clearing payment, vectors, and the payments received by j from other nodes cannot he any smaller
under p* than they are under ' (because p’ < p¥), it must be the case that the value of j’s equity is
strictly higher under p* then it is under p—. This contradicts (b), and this contradiction establishes

that p~ = pt, i.e., that (c) holds. (]

Some intuition for the importance of regularity for the uniqueness result is provided by the
following example. Suppose the system contains two nodes, 1 and 2, and each node hes a zero
operating income. Moreover, each node has nominel lisbilities of 1.00 to the other node. In our
notation we have that e = (0,0)7, § = {1,1), and

= [‘1’ [1,]
This system is not a regular financial system, because the single risk orbit of the system {1,2} is
notlasurpiusset. In this example, any vector of the form p: = £(1,1),% € [0, 1] is a clearing vector
for the system. In contrest, if we modify the example by giving ane cent to the first node by setting
¢ = (0.01,0)-, we see that the unique clearing vector is given by p* = (1.00,1.00). The payment
vectors py, £ < 1, do not satisfy the absolute priority condition under given €' because they leave
Node 1 with an equity balance of 0.01 despite the fact that Node 1 has not completely satisfied its

nominal obligation to Node 2.

8 Characterizing clearing vectors
8.1 Sequence of defaults
In this section we show that the clearing vector can be viewed as the product of a simulated

or “fetitious” default process. This process both permits the construction of & simple algorithm
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for identifying clearing vectors and produces a natural metric for measuring a node’s systemic risk
exposure. We call this simple algorithm the fietitious defaalt algorithm. In essence, the idea behind
the algorithm is strajghtiorward. First determine each node’s payout assuming that all other nodes
satisfy their obligations. If, under the assumption that all nodes pay fully, it is in fact the case that
all obligations are satisfied, then terminate the algorithm. If some nodes default even when all other
nodes pay, try to obvious the system again, assuming thet only these “frst-order” defaults occur.
If only first-order defaults occur under the new clearing vector, then terminate the algorithm. If
second-order defaults occur, then try to clear again assuming only second order defaults oceur, ete.
It is clear that since there are only » nodes, this proeess must terminate after n iterations. The point
at which a node defaults under the algorithm is a measure of the node's exposure to the systemic
risks faced by the clearing system.

Describing the algorithm in detafl and proving that it is offective requires that we develop
some new coucepts. Let & be the set of supersolutions of the fixed-point operator ®; that is,
S = {pe0f: 2 <} Notetha, for any such supersolution, because total equity value is
positive, it must be the case that at least one node does not default, ie., it is not possible that
&(p) < p. For each p € §, let the default set under p, which we denote by D{p), be the set of
nodes i, such that ®(p); < #i. By the earlier observation, D{p) cannol contain all nodes. Let A(p)
represient, the n X n diagonal matrix defined as follows:

_J1 i—jandicDp)
Alp)s 0 otherwise.

A(p)i; is a diagonal matrix whose values along the equal 1 along the diagonal in those rows rep-
resenting nodes not in defeult under p, and equal to 0 otherwise. Thus, when multiplied by other
matrices or vectors, the A matrix converts the entrics corresponding to the nondefaulting node to 0.
The complementary matrix I — A(p’) converts entries corresponding to defaulting nodes to 0. For

fixed ¢’ € 8, define the map p — FF, (p) es follows:

FFy (p) = A@) (T (A@)p-+ U — AWP) 4 ) + (T - A6 (7). (FIX)
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This map, FF,(p), simply returns, for all nodes not defaulting under g/, the required payment 3,
and, for ell other nodes, returns the node’s velue assuming that nondefaulting nodes under p’ pay
in full, and defaulting nodes under ¢’ pay p. By our earlier result, Lemms 1, the default set is not
a surplus set. Thus, A(p)TI bas a row sum that is less than 1, and no row sum exceeds 1, this, in
turn, implies that FF,s has a unique fixed point by standard input-output matrix results (Kerlin,
1959, Theorem. 8.3.2). Call this fixed point f{p/). Note that only when g’ is a supersolution cen
we be assured that f{p’) is well defined. Next, define inductively the following sequence of payment

vectors,
=5 ¢ =1, (FDS)

We call this sequence of vectors the fickitious default seqmence, and we call the process of producing

these vectors the fictitious defauli algorithm.

Lemma 5. The fictitious default algorithm stated in (FDS) produces & well-defined sequence of

vectors, p’, ‘This sequence decreases to the clearing vector in at most n iterations of the algorithm.

Proof. First, we show by induction that the fictitious default sequence is well defined and decreasing.
To show this, we must show that for all p?, p? is a supersolution to & for all j and that the sequence
(p?) decresses. We cstablish this result by induction. When § = 0, these assertions are chvious.
Next, suppose the assertions are true for p*. Note that the heﬁﬂﬁm of the A matrix implies that
AP*)P* + (I — A(p*))§ = p*. Because py. is a supersolution to ®, it must be the case that for
all defaulting nodes 4, (TIp* + €)¢ < pf. This implies, combined with the definition of A, that
&(p*) = FFu(p*). By the induction hypothesis, p* is a supersolution to @. Therefore, p* is &
supersolution to FF,. This fact implies that p***, the fixed point of FF e, is less than or equal
to pe. Because p**! < p*, the set of nodes at which default occurs must be no smaller under p*
than under p***. Now, if the set of nodes is the seme, then ®(p*+!) = FF(p"), and which implies,
because by definition p*+! is a fixed point of FF,«(p*), that p**! is a fixed point of ®, and thus
trivially a supersolution. If the set of defaulting nodes is larger under p**!, then some nodes that

peid their obligations in full under p* default under p*+1, and the rest of the nodes either default
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under both payment vectors or under neither. Thus, for these nodes such thast default occurs under
21 but not p*, ¢{p*t1); < pF*. For all other nodes, the fixed point construction implies that
B(p*+4); = pFtl, Thus, we have that p7 is a supersolution to @ and that (p;) is a weakly decrensing

sequence.

As shown in the previous paragraph, if the set of defaulting nodes is the same under both pi+l
and p/, then (i) p is a fixed point of ¥, and (i) the sequence will remain constant after pyrg. If p°
fails to be a fixed point of the map &, then a node that did not: default under p? defaulis under pf+!.
In this case, the number of defaulting nodes, specified in the next A matrix, will incresse in the next
iteration. Because there are only n nodes and at most n — 1 can defgult in any supersolution, it
must be the case that the payment vector procuced by the algorithra ceases to change after at most
n iterations. Because the sequence is canstant only at fixed points, the clearing vector is attained

in at most n iterations. ™

The fictitious default algorithm works as follows. First, start with a trial solution which specifies
that all nodes pey their obligations in full. Tf all node are indeed able to satisfy thejr obligations
assuming that other nodes meet theirs, then the algorithm termineles with a clearing vector. If some
node defaults under the first trial solution, fix the payments of the nondefaulting nodes under the
first trial solution at full repayment and solve the linear equations that equate inflows and payments
for those nodes that defaulted under the first trial solution. This process generates a second trial
solution. If no new defaults occur under the second trial solution, then the second trial solution
is & clearing vector. However, in the second trial solution, the value of the nodes will be lower
than at the first trial solution because inflows will be given a smaller payment vector. Thus, some
nodes that did not default under the first clearing vector may defaulf under the second. If defaults
occur, then fix the payments of the nodes that did not default under the second trial sohution al
full repayment and solve for the payments of the remaining nodes, ete, Contimied iteration of this
procedure produces a series of payoff veclors that converge to the dearing vector. Because the trial

solution only changes when & new default occurs, convergence must occur in at most 7 rounds. Note
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that for large networks, this procedure is much more efficient than the extensive procedure of solving
the linear equations that define the clearing vector for all possible subsets of nodes, because this sort
of extensive procedure requires solving up to 2* sets of lmear equetions rather than at most the n
linear equations that must be solved using the fictitious default algorithm, An example Mlustrating
the fletitious default algorithm is provided below. The parameters of the financial system are given

as follows:

Example: Fictituous defanlt algorithm

Finencial system:
0 B & o
0 o & L 614 13 12

U= '11_3 0 0 %% 3 ﬁ—(llgfgvg)i e—(gs'l_d:iamg)

0o 3 % o

Steps in fAetitious default algorithm:

Trial solution: p Default sef: IS{p)

pO (11'3:%3 ) {134}

P1 {%s %s %:%) {152:4}

pz {%l%ﬁ%l%:%) {1:2s4}

In the example of the fctitious default algorithm, the initial solution, £, is set to full repayment.
At this solution, Nodes 1 and 4 default. The next solution, p!, set to equal the solution to the linear
equations that clear the system assuming that only Nodes 1 and 4 default. At p', in fact, Node 2
defaults in addition to Nodes 1 and 4. The next iteration solves for p?, the clearing vector assuming
that only Nodes 1, 2, and 4 default. Under 72, in fact, es assumed, only Nodes 1, 2, and 4 do default.
Thus, the default set does not chenge and the algorithm terminates, producing the clearing vector

in two iterations.

In addition to being computationslly efficient, the algorithm has an economic inferpretation;

The step in the algorithm at which & node is added to the defaulting sot can he used as & measurs
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of the node's financial health, Nodes that default under the fimst trial solution are fimdamentally
insolvent because they cannot survive even with no systemic risk exposure. Nodes that fail in the
- next wave are quite fragile in that they fail whenever fundamentally inzolvent nodes feil. The third-
order failures are triggered by the failure of fragile, but not fundementally unsound nodes, ete. Thus,
nodes are partitioned by the algorithm into solvent nodes and 1, 2 ... n — 1-th order failures. Thus,
the algorithm, combined with Monte Carlo simulation of exogenous income of the nodes, e, can be
used to construct a probability distribution over orders of default for each node associated with the
given stochastic shock to exogenous income. This distribution could form the basis for a practical

metric for systemic-risk exposure to nodes in a financial network.

8.2 Prograywming characterization

Next we will show that clearing payment vectors can be identified by solving almost any pro-
gramming pfoblem theat places weight on meximizing peyments by all nodes in the system subject
to the limited liability condition. Formally stated, we associate with each financlal system (11,7, ¢),

and each function f : [0,5] — R, the programming is problem

P(Lp.e f) Plg[gvg] f(®
s.t. p<Ip+e.

The link between this programming problem and clearing payment vectors for the financial

system is provided by the following lemma.

Lemmma 6. If f is strictly increasing, then any solution to P(I, §, 2, f) is a clearing vector for the

financial system.

Proof. If p* solves P{11, 5, e, ¢}, the the fact thai p* is a feasible solution to P{II, 5, e, ¢) ensures that
p~ satisfies the limited liability condition for a clearing payment vector. If absolute priority were not

satisfled, say at node i, then it would be the case that pf < 5 and

(I7p" +e "% >0
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Consider the vector p, which is equal to p* in all components except ¢, and, for 4, Is given by pf + ¢

where € is chosen sufficiently small to ensure that limited lahility remains satisfied. Because
(HTPe-I-e—Pe)j“(HTP"Fe—P‘);‘=€nij20|
Pe i8 fensible. Because p, is at least equal to p° in all its components and greater than p* in one of

its components, and f is strictly increasing, it must be the case that f(»*) < f(p.), contradicting

the suposition that p* is a solution to P(II, §,e, f). O

Because clearing vectors ate determined entirely hy the limited lability and absolute priarity
conditions, it follows that these two conditions always produce payoff vectors that maximize the
totel extraction of payments from the nodes in the financial system. Because the clearing vector
is unique in any regular financial system, the result also implies thet in regulsr finencial systems,
all decision mekers who prefer more payments to less will agree that the clearing vector meximizes
their objectives. Thus, for example, whether one attempts to maximize cents on the dollar paid or
total payments, or payments weighted by a biased weighting scheme that favors some nodes over
others, the end result will be the same—the selection of the clearing vector. The above result shows
also that, for a regular financial system, solving the programming problem given by P(II,J,e, f)
for a suitably chosen function f, say a linear function with positive weighting constants, is & wey
of computing the clearing vector. In fact, this is exactly the approach the monetery authorities
in Kuwait took to clearing the financial net after the crash of the al-Manakh market. Given the
n— 1-step convergence of the flctitious default algorithm discussed above, however, this programming
approach may not be an efficient way of ecomputing clearing vectors given thet only one variable
will be introduced into the basic solution on each pivot. Algorithms that exploit the economics of
the problem, such as the fletitious defeult algorithm developed above, allow for the sironltaneous

introduction of many defaulting nodes in a single step.

4 The Comparative statics of the clearing system
The first question we will address is how this clearing payment vector changes with changes

in the exogenous parameters of the model. We first consider the relationship between this clearing



Juno 19, 1699 Cloaring Networks 22
payment vector and the operating income received by the system e, while holding the nominal
liability matrix L (or equivalently I and §) constant. The basic characterization of this relationship
is provided below. Inordertoensurethattheclearingvacborisuni‘que and, thus, that comparative
statics in the traditiona] sense are possible, we henceforth restrict our attention to regular financial

systems,

Lexmna 7. The clearing payment vector is a coneave, increasing fimetion of operating income and
the level of nominal linbilities, and is cancave in the relative liabilities matrix. In other words, the
function e — FIX(®(+;11,5,e)), and the function § — FIX(®(-;11, 5, e)) are cancave, Increasing, and

nonexpansive; further, the frmction II — FIX(®(; 11,5, €)) is cancave,

Proof. For the purposes of this proof, define the function ¥:[0,5] x %% ,:— [0,8] by F(p,e) =
®(p,e;I1,5). The clearing payment vectar is given by the function f:%%, — [0,5], defined by
fle) = FIX(F(.,¢)). A theorem from Milgrom and Roberts (1984) shows that the fact thet F' is
increasing in e (established in Lemma 3) implies that f is increasing. To see that f is concave and

nonexpansive, define a sequence of functions,{ f..(e)}5%, inductively as follows:

fﬂ(e) = F(fn—l(e);e)v fﬂ(e) = 0.

For each fixed € € R4, fale) is just the nth iteration of the map p — ®(p; I, 7, ¢} function starting
at the initial payment vector 0. Thus standard results on the convergence of iterates of monolone
increasing operators show that f,,(e) T f{e), for all e. Using the fact that # is nondecreasing, jointly
concave in p and e, and nonexpansive, induction shows thai, for all n, f, is concave and nonexpansive.
Thus, f is the pointwise limit of nonexpansive concave functions and thus concave and nonexpansive.
The above argument establishes the claim of the lemma for the function e —» FIX(®(-; 11,5, e)). The
proof of the claim for § — FIX(®{-;I1,5,¢)) and IT — FIX(®(-;II, 5, e) is identical and thus will be

omitted. 1

Note that in the standard single-period/single-firm financial model, the payment to debtholders

equals min[p,e] where e is the firm's operating esrnings and $ is the level of the firm’s nominal
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liabilities. Thus, the payment received by debtbolders is a conceve, increasing, nonexpansive func-
tion of the firm's operating income and the level of nominal lishilities. Lemma 7 shows that these
quelitative features of the debt payments in single-firm settings are inherited by the debt payment
vectors of multi-node clearing systems. This result has & nurnber of direct implications. For ex-
ample, coneavity of the payment stream in operating income implies that incresses in the riskiness
of operating income, in the sense of second-order stochestic dominanee under the market-pricing
measure, will reduce the expected payments recaived by debtholders and thus lower the value of
debt claims. However, such risk shifts will not lead unambiguously to increased equity values for the
nodes In the system. The reason for this is simple. In our model, all debt claims are owned by some
stockholder at some node of the systam. This implies that increases in risk across the system have
two effects. First, they raise the value of equity by lowering the value of the debt payments made
by stockholders to other nodes. Second, the increased risk also lowers the velue of the portfolio
of debt securities held as essets by each stockholder. Thus, the effect of global nsk increases is
ambiguous, The concavity of the clearing payment vector in the relative liabilities matrix implies
that payment structures that are nondiversified (each firm makes all payments to one other firm)
produce smaller clearing vectors than systers featuring diversified cleering vectors (each firm hes

roughly equel obligations o all other nodes).

Next, note that all of our results can also be interpreted in terms of node value, Tbund;:rstand
this, note that the terminal-date equity in a financial system is TI7p" + ¢ — p*, and the debt is p*(e),
where p* is the clearing vector for the finaneial system. Thus, the totel terminal value of any node
in the system is the value of debt plus the value of equity, or IITp* + e. Total value of all nodes in
the economy is thus just 1- (I"p" +¢) = 1 - (p* + ), the sum of the value of equity and the value
of ell payments on liabilities under the equilibrium clearing vector. From this result we obtain the
following simple corollary to Lemma 6.

Carollary. Increase in the diversification of obligations among nodes, increases the aggregate velue

of nodes in the clearing system.
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Another siraightforward, but nevertheless interesting consequence of Lemma 6, relates to the
effect of income volatility on the aggregate value of nodes in the financial system. Since, in an
arbitrage-free economy, the initial value of & nodes s just the discounted expectation of its terminal
velue under the equilibrium pricing measure, and because the function mepping income fo node

value, ¢ — II¥p"(e) + ¢, is concave, the following corollary to Lemms 6 is immediate.

Corollary. Increases in the unsystematic volatility of exogenous shocks {operating incoms) to the
financial system lower the initial value of all nodes in the system.

Thus. node value is reduced by unsystematic economic volatility, even though, in our analysis
their are no dissipetive consequences of financial distress even when markets are perfect and frie-
tionless. Volatility reduces the size of payments between nodes and this reduces the market value of
nodes. Since, clearly in the frictionless market setup specified above, unsystematic volatility has no
adverse welfare consequences, this result should be interpreted as a caution against interpreting the
reduction in corporate value caused by unsystemadic risk as reflecting either market imperfections

or irrational asset pricing.

Next, we show that, in some scnse, convex combinations of financial systems can never have
defnult or payment rates inferior to the worse of the two or superior fo the better of the two. In
order to permit a precise formulation of this idea, let p*(II, #, e} be the clearing payment vector as-
sociated with an arbitrary financial system (I1, 5, e); that is, p~(I1, , €) = FIX[®(-; 5, ¢)]. A A-convex
combination of the financial systems (IV, 7, €') and (I1”, §”, ¢”) is the financial system, {Ilx,8x,21),
defined by

(Hlvfa\y e)i) = ,\(H’,ﬁ’,E’) T (1 - A)(H",ﬁ”, e”):’\ € IDI 1]:

Lemma 8. Suppaese that the financial system (115, Pa, £3) i8 a A-convex combination of the financial
systems (IU', 7 ¢') and (11", 7", e™), then the equilibrium clearing payment vectors of the financial

systams {p") satisfy the following inequalities:

p'(nf’ﬁ" 8’) Ap' (H":ﬁ”: 8”) S p'(na\:ﬁa\le)\) S p.(nr'lﬁ(’ e’) VP'(H":ﬁuu e”)'
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Proof. Note that, for all { € N, the function A — &{p;II,, Pa, € ) Is linear, and therefore monotonae.
Thus we have that

e(p I, 0, e") A B(; I, 7, 6") £ B(p;1Ia, a,02) < B IT, 7, ) V &5 117, 7, ).

H™(p) = ®(p; I, 7, ') AB(m 1", 7, €"), H'(p) = ®(p;IT,7,e')V (p; 1", €").

Note that H~ and H* are monotone, increasing maps defined on [0, §] with fixed points in this
order interval. If pt* is a fixed point of H and p~ is a fixed point of H~, then the above inequality
implies that

P~ <p*(hh,e) < pt.

Because p*(Il', #,¢") v p*(I1", ", "} is a supersolution to H7, ie,,
pt <", P, ¢) Vi {Il", 5, ).
Similarly, because p"(Il', 7, ') A p*(II”, #, €} is a subsolution to H~,
p~ 2p"Il, 7. e) Ap" (", 0", €").
The inequalities follow. O

Lermma B is a fairly weak result. Howaever, a stronger charecterization, such as & concavity result
for financial systems, i.e., a result showing that convex combinations of systems yield higher payment
rates than convex combinations of the payment vector of the two systems being combined, cannot
be obtained. In fact, it is ensy to construct counterexamples to this stronger characterization.? The
failure of concavity occurs because the map (I,p) — &(p;IL5,¢) is not concave, although it is

concave in each of the variables, IT and p, separately.

? A mumerical counterexample is availeble upoh request.
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8 Possible extensions and concluding remarks

In this paper, we provide conditions for the existence and uniqueness of & clearing vector for
a complex financial system, anslyze the properties of the clearing vector, and provide comparative
statics describing the relationship between the clearing vector and underlying parameters of the
financial system. This work represents a confribution to our understanding of the modeling of
complex financin] systems featuring cyclical obligations between the parties. However, it is only
& first step in the development of a research program in this area. In fact, one of the virtues
of our analysis is that it can be extended in many directions, Extensjons fall into three broad
categories: (1) utilizing the current model for valuation and risk analysis; (i) dealing with more

complex legal /institutional structures; aud (iii) incorporating dynamics.

The simplest extension of the present anelysis is to use the formulse developed in the paper to
value financial ¢laims and assess default probabilities for financial networks. Given a structure of
liabilities, the value of the debt and equity claims for a fixed level of exogenous income at the terminal
date is determined by our model. If we assume exogenous income follows a stendard stochastic
process between the initial date and the clearing dafe, then this stochastic process, combined with the
terminal boundary conditions imposed by our mods} and standard risk-neutral valuation technology,
can genernle prices for the debt and equity of the nodes in the system (sce, for example, Duffie
{1992)). In addition, probabilities of default and default correlation can be easily be computed. In
addition the distribution of cash flows to each of the nodes also can be computed and inverted to

yield value-at-risk estimates.

Extending our results to allow for more complex legal and institutional structures is almost
as transparent. For example, the nodes in the system could be allowed to hold intercorporate
equity claims as well as intercorporate debt claims. In this case inflows would be augmented by
equity as well as debt inflows. Because equity claims are linear, this extension would not complicate
our analysissignifieantly. Multiple priorify classes enuld be accommodeated by our framework. 1o

accommodate multiple priority classes, we would utilize a sequential clearing procedure in which first
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a clearing vector for senior claims is found, then the residual value is treated as the exogenous equity
in the system for the second clearing of the next highest priority claim, etc. Another important
extenston would be to ellow for viclations of ahsolute priority, a significant factor in corporate
bankrupicies, though not in some of the financial network clearing systems adressed earlier. The
kay assumptions that drive most of our results are that credifor claims are continous and increasing
in the value of the node. If violations of absolute priority are the product of efficient multilateral
bargaining, es assumed in much of the literature (e.g., Brown, 1996), then creditor ¢laims are likely
to have this property. In petworks where there are substantial fixed costs of financinl distress,
continuity is lost and, for this reason, one would expect to obtain more opaque results: for example,
the lack of & unique clearing vector even when mild regularity conditions, such as thase used in this

paper, are imposed.

The most difficult direction of extension would be to allow for more than ane clearing date, and
thus incorporate true dynamics. In principle the extension is straightforward and would preceed as
follows. First, sllow for intercorporate equity and assume that nodes that default at a piven date
become wholly owned by their creditors from thet date forward. Next, allow all nodes to borrow
from & node outside the system that itself is not subject to defanlt risk. The outside node, or
“central bank,” would provide funds st & competitive rate, Thus, nodes would only default when,
at the clearing vector, the value of future inflows is less tha.n the value of liabilities. Using this
motif, and backward induction, ane could recursively solve for clearing vectors. Uncertainty eould
be introduced into this fremework by recursively computing the expected value of future inflows in
order to determine the current economic value of the node and thus solve the default problem for
successively earlier periods. Of course, this sort of extension of our analysis, through the “curse of

dynemic programming” would greatly increase the complexity of the analysis.



Juno 18, 1899 Clearing Notworks 28

8 References

Angelini, P., G. Maresca, and D. Russo, 1996, Systemic risk in the netting system, Journal of Banking
& Finance 20, 853-868.

Duffie, D. and M. Haung 1996, Swap rates and credit quality, Journal of Finance 51, 921-49.

Duffie, D., 1982, Dynemic Asset Pricing Theory, Princeton, N. J,, Princeton University Press.

Elimen, A., M. Girgis, and S. Kotob, 1997, A solution to post crash debt entanglements in Kuwait's
al Manekh Stock Market, Interfaces 27, 98-1086.

Horn, R., and C. Johnson, 1985, Matrix Analysis, Cambridge, Cambridge University Press.

Karlin, 1959, Mathamatical Methods and Theory in Games, Programming, and Economies, New

York, Addison-Wesley Publishing Company.

Milgrom, J. and J. Roberts, 1994, Comparing equilibria, American Economic Review 84, 441-59.

Rochet, J.-C., and J. Tirole, 1996, Interbank lending and systemic risk, Journal of Maney Credit

and Banking 28, 733-762,

Zeidler, F., 1986, Nonlinear Functional Analysis and its Applications I: Fixed-Point ‘Theorems,

Berlin: Springer-Verlag,



