
MEMORANDUM  
TO:   File  
FROM:  Jordan Bleicher  
RE:  Meeting with Bloomberg LP  
DATE:  September 16, 2010  
 

On August 23, 2010, representatives from the Securities and Exchange Commission (“SEC”) 
met with representatives from Bloomberg LP (“Bloomberg”) and Williams & Jensen, PLLC 
(“Williams & Jensen”) at the SEC’s headquarters in Washington, DC. The SEC representatives were 
Jordan Bleicher, Henry Hu, Bruce Kraus, and Harvey Westbrook.  The Bloomberg representatives 
were Gregory Babyak and Adam Litke.  The Williams & Jensen representative was Joel Oswald.  
Bloomberg and Williams & Jensen discussed the collection of data needed to measure systemic risk 
and urged the SEC to support an open source approach to the development of party and financial 
instrument identifiers.   

On August 30, Adam Litke sent the attached materials to provide additional information 
about topics discussed. 

   



Agenda ‐ August 23, 2010 (12:30pm) 

 

I. Systemic Risk 

II. The Functioning of the Office of Financial Research 



From: Hu, Henry
To: Bleicher, Jordan
Subject: FW: Follow up to our meeeting last week
Date: Tuesday, August 31, 2010 8:25:21 AM
Attachments: bsym-whitepaper.pdf

bloomberg_research_report_cast.pdf
eisenberg noe_systemic risk in financial networks.pdf

-----Original Message-----
From: ADAM LITKE, BLOOMBERG/ 731 LEXIN [mailto:alitke2@bloomberg.net]
Sent: Monday, August 30, 2010 4:48 PM
To: Hu, Henry; Kraus, Bruce; Westbrook, Harvey B.
Cc: gbabyak@bloomberg.net; jgoswald@wms-jen.com; defranasiak@wms-jen.com
Subject: Follow up to our meeeting last week

Dear Sirs:

Thank you very much for taking the time to meet with us last Monday.
  
As I stated in the meeting, we believe that there are several key information areas where the interests
of the financial services industry and the regulators converge.  To the extent that all of the relevant
agencies, SEC, Treasury, OFR, FRB, CFTC, FDIC adopt common standards for the format of the data
that they are collecting from the firms they regulate, it will make it easier and cheaper for these firms to
comply with such requests.  It should also serve as an incentive towards internal data standardization
for those firms that have not fully integrated their own data.
 
In addition to the public standards such as FPML and XBRL, which we fully support, there are several
areas where no public standard yet exists.  The most important of these are security identifiers and
capital structure.  As promised, I am attaching information on BSYM and CAST. 

BSYM is Bloomberg’s open symbology for security identifiers.  It was designed to deal with the many
different symbol systems used in different securities markets around the world and to solve some of the
problems, such as re-use of symbols, that are inherent in some of these systems. We have made this
available in the public domain.  Full information on BSYM is available on the website
http://bsym.bloomberg.com.  I have also attached a white paper. 

CAST is Bloomberg’s capital structure product.  In practice it is a combination of two types of product. 
The first is a complete list of public companies and their subsidiaries.   At the present time, this list only
includes entities that have, at some point in their existence, had either bonds, loans, or equity shares
outstanding .  However, as this information is reconciled back to the filings of these companies, it would
be a relatively simple matter for us to include all subsidiaries.  The information is stored in tree form and
shows guarantee relationships between the legal entities.  The second type of data is the outstanding
obligations of these entities as well as considerable detail on this issuance including covenant
information.  CAST presently covers almost 15,000 companies around the world including over 97% of
US companies.  I have enclosed a short document that shows how CAST works.  In a few days, I will
also forward a larger document that gives more details.  If you are interested in this product, including
how we maintain the accuracy of our data,  I would be more than happy to put you in touch with Liz
Goldenberg, the product manager for CAST.

Finally, I have attached a copy of the paper by Eisenberg and Noe on systemic risk and market
clearing.  I think you may find it of interest.  Eisenberg is presently at work on a multi-period sequal to
the paper and I would be more than happy to put you in touch with him if you want to discuss his
work. directly.

Please feel free to contact me if you should have questions about any of this.

mailto:/O=SEC/OU=HQ/CN=RECIPIENTS/CN=HUH
mailto:BleicherJ@SEC.GOV
mailto:alitke2@bloomberg.net
http://bsym.bloomberg.com/
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BSYM Identifiers Advance Cause of Open,  
Automated Securities Trading
Bloomberg Open Symbology Introduces New Operational Efficiencies and 
Cost Reductions for the Trading Community


Introduction
Chaos theory has nothing on the complexity generated everyday by the millions–perhaps billions–of security  
transactions that cross trading floors, clearinghouses and exchanges all over the world. Almost every aspect of  
securities management is based on closed systems that use proprietary identifiers that are privately owned and  
licensed. Closing each deal is as much an exercise in translation as it is in transaction processing, as traders,  
investors and brokers wrestle with multiple proprietary formats to determine what a security is, who owns it, how much 
it is worth, and when the deal should be closed.  It introduces a tremendous amount of friction into the trade lifecycle 
and creates opaqueness where clarity is sought. In addition, the use of proprietary identifiers adds significant cost and 
overhead when users wish to integrate data from disparate sources or migrate to a different market data system.  


Symbols are essential to the securities industry. Each one uniquely identifies a specific security instrument, just as a 
VIN number uniquely identifies every motor vehicle. Symbols are used to research and trade securities, assess risk, 
manage portfolios, and manage settlement and clearing. 


Even though there are national numbering agencies that create unique identifiers, symbol sets have evolved in  
complexity over the years to match the growing sophistication of the products they describe. Sets must be extended 
and created to catalog levels of granularity in symbology that a single ID simply can’t capture. For privately traded, 
over-the-counter products, there may be no proprietary id available.


The evolution of advanced symbologies has helped the securities industry grow, but the limitations and costs imposed 
by the closed systems have become more apparent as companies and institutions continue to integrate operations on 
a global scale. Proprietary symbology now stands as one of the most significant barriers to increased efficiency and in-
novation in an industry that sorely needs it. Moreover, the lack of common identifiers is a key roadblock to achieving the 
holy grail of straight-through processing (STP).  


Consider the following:
•	 Licensing fees require firms to pay for each symbol system they use. International firms bear an especially  


heavy burden, because they often have to license several symbologies in order to manage trading operations  
in several countries.


•	 Restrictions imposed by proprietary symbologies prevent companies from easily mapping one set of codes to  
another. This hinders integration of market data from diverse sources as well as efforts to automate trade and  
settlement activities.


•	 Market data consumers who adopt proprietary symbols for use in their own systems must not only pay licensing  
fees, but such symbols also lead to significant future costs associated with efforts to connect to emerging  
trading systems.


•	 Proprietary trading environments may have worked well for years; but they are a byproduct of a time when data  
systems operated largely as islands that did not have to interoperate with other systems.


Current trends dictate a different approach. Markets, customers and governments are demanding greater  
connectivity, transparency and efficiency. What’s more, the openness of Internet-based systems has profoundly  
altered the way businesses–and individuals–collect, manage and share information. Thus, in addition to new  
regulations that demand clarity and accountability, the move to open symbology is being driven by growing investor  
and institutional demands.


Adopting an open system of shared symbology establishes the foundation for a tremendous leap forward in the  
efficient trade and settlement of securities. Such a system will allow firms and technology service providers to shift 
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resources from laborious, inefficient processes to new investments in tools and products that will better serve clients.


An open system answers the call for greater transparency. Eliminating the need to remove proprietary IDs and re-map 
securities will greatly simplify the steps needed to migrate between market data platforms and trading systems.  
Availability of a central symbology reference will facilitate mapping between users’ internal systems and create  
opportunities for integration and automation of the global enterprise.


Introducing Bloomberg Open Symbology (BSYM)
In response to the market demand for open systems and symbology, Bloomberg has released Bloomberg Open  
Symbology (“BSYM”) identifiers and has dedicated these identifiers to the public as set forth at the BSYM web  
site (bsym.bloomberg.com). BSYM is now available as a non-proprietary, open, security identification system that  
anyone can adopt.  BSYM offers any company involved in securities trading a number of advantages over closed  
and costly systems.


•	 BSYM is a universal securities symbology that offers companies the potential to streamline internal management 
functions and reduce costs associated with maintaining multiple symbology systems.


•	 BSYM can be used independently of any Bloomberg product or system and there is no limit on the term of the 
license, so users will never be required to pay for or remove BSYM identifiers from their systems.


•	 BSYM can be applied in many unique ways. For example, a middleware tool built on BSYM would create a bridge 
between companies using proprietary systems, allowing them to speak in a common language without the need to 
license additional symbologies. This creates significant cost savings through reduced licensing fees and automated 
processing for all participating firms.


•	 BSYM can be used for any purpose and incorporated into any system now and in the future. Systems built on BSYM 
symbology will never be required to pay licensing fees for its use.


•	 BSYM will greatly reduce the cost associated with changing platforms, allowing companies the freedom to select 
systems that best suit their needs.


The call from the market for systems that encourage innovation and efficiency couldn’t be clearer. Bloomberg is com-
mitted to delivering the tools and standards that will help the securities industry enjoy a new era of advancement.


Using BSYM Identifiers
BSYM is not a single identifier.  It is the name for Bloomberg’s family of security identifiers.  The BSYM identifiers allow 
trading and market data systems to cross reference security identifiers from various sources and various Bloomberg 
data products. Toward that end, Bloomberg is allowing BSYM Identifiers to be freely reproduced, distributed,  
transmitted, used, modified, built upon, or otherwise exploited by anyone for any purpose at no cost.  Indeed, 
Bloomberg is encouraging all members of the trading community to use BSYM identifiers for integration and  
redistribution within and beyond their organizations.


BSYM identifiers available at bsym.bloomberg.com can be used to map data across all of Bloomberg’s raw data  
products, and they can also be used to determine the ‘parse key’ for loading a security on the Bloomberg Terminal 
command line. BSYMs can be searched by many proprietary IDs, such as the Stock Exchange Daily Official List 
(SEDOL), Committee on Uniform Securities Identification Procedures (CUSIP), and the International Securities  
Identification Number (ISIN), as well as by security description, security type, and pricing source.  
Bsym.bloomberg.com also provides predefined dump files and searches, as well as custom search and filter  
capability. All data is refreshed on a daily basis.  


Expanded security coverage, additional Bloomberg Identifiers, and additional mechanisms for searching and requesting 
data will be added as needs are defined.


For the purpose of BSYM, a security is defined as an issue that may be priced by multiple pricing sources–such as 
IBM’s common stock, and the 10 Year US Treasury Bond. An Instrument is defined as a security that is pricing or 
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trading in a specific venue – such as NYSE, AMEX, US Composite, a specific broker-dealer, or Bloomberg Generic 
Pricing.  Instruments are identified at the level of their market price (Ticker + Pricing Source, BSID). Securities are 
identified at the level of the issue itself (Unique Identifier, Name).  


Understanding BSYM Fields
Name	 Name of the company or brief description of the security. The Name of an instrument may change  


in conjunction with corporate actions.


Unique ID	 Unique identifier assigned by Bloomberg to all securities. This id can be used for mapping B-Pipe 
and API identifiers to Bloomberg’s Data License products. Data License provides extensive funda-
mental and security master data that complements Bloomberg’s real time data offerings. The Unique 
ID can also be used to load a security onto the Bloomberg Terminal by prefixing the value with ‘ID’  
on the command line. In general, for equities, the Unique “ID” groups together instruments that 
contribute pricing to the same composite market (e.g. US, JP).  However, an exception to this rule 
occurs when the same security trades in different currencies in the same market, rendering the  
trading instruments nonfungible. In these cases, securities will have a different Bloomberg Ticker 
and Unique ID for each currency in which the security trades.  MiFID OTC markets are a good  
example of this (see examples below). For fixed income securities, the Unique ID identifies a  
security across all dealers and currencies, so the Unique ID is not an indicator of fungibility or  
participation in a composite for fixed income. The Unique ID of a security may change in  
conjunction with corporate actions.


Security Type	 Description of the specific security type within its Bloomberg market sector (Yellow Key). This  
classification corresponds to the predefined list of files that are available on the BSYM website. 
Mappings from Market Sector to Security Type are available on the Web site under the ‘Security  
Type Mapping’ link.


Market Sector	 Market sector that Bloomberg has assigned to the security. This corresponds to the Bloomberg  
Yellow Key.


Pricing Source	 Acronym or short code for the market data source, used on the B-Pipe feed. This field provides  
B-Pipe source codes for a variety of asset types. Note that in some cases the source in this field 
is not loadable on the terminal.  B-Pipe makes a distinction between sessions in the source field, 
while the terminal handles this by means of the PCS <GO> function, which allows configuration 
of user-specific session preferences. In general, for markets that have electronic, pit and combined 
sessions, the pit session will use the source code found on the terminal: the electronic session will 
use that code prefixed by “e”, and the combined session will use the source code prefixed by “c”. 
In addition, B-Pipe assigns a source code for indices that are not used on the terminal, e.g. DJI for 
Dow Jones pricing the INDU index. Pricing Source is currently available only for B-Pipe priced  
securities. See the “Pricing Source Descriptions” link on the BSYM Web site for a mapping of the 
Pricing Source code to a description of the source.


BSID	 (Bloomberg Security ID Number with Source) - Unique integer identifier for all B-Pipe securities. 
This identifier is used for subscription services in B-Pipe (Managed and On Demand). BSIDs are 
unique at instrument level and have a 1-many mapping with the Unique ID field described above. 
The BSID of a security may change in conjunction with corporate actions and is available only for 
B-Pipe priced securities.


Ticker	 Unique B-Pipe ticker symbol. Combined with the Pricing Source and Market Sector, this forms a 
loadable security string on the Bloomberg terminal for most securities. The ticker may change in 
conjunction with corporate actions and is available only for securities that are priced on B-Pipe.
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BSYM Ticker Creation
The rules for forming the BSYM Ticker vary according to security class.


Currency	 For basic cross rates B-Pipe uses the ISO codes for both currencies.


	 Due to the wide variety in type and the desire to keep them short currency derivative symbols are  
not so clear-cut. They tend to be based on the ISO codes, but they are often truncated. They can 
also be based on the futures exchange codes such as ED, BP, SF, etc. The type of derivative is often 
included as an abbreviation, and although the use of the abbreviation is consistent for the derivative  
it is difficult to predict. Time periods are almost always included when relevant.


	 Spot (implied cross rate against the US dollar) currencies are not available. Instead you have to ask  
for explicit cross rate, e.g., instead of using “EUR” or “JPY” use “EURUSD” or “JPYUSD”.


Equity	 Equity symbols are usually the exchange ticker.


Fixed Income	 Fixed income symbols are built by combing a root symbol, the coupon, the maturity date and  
an optional series. 


	 A zero coupon is represented by “0”, e.g., “PEISTP 0 01/29/23”


	 A floating coupon is represented by “F”, e.g., “CNC F 12/04/13”


	 A variable coupon is represented by preceding the coupon with “V”, e.g., 


	 “MQB V5.75 02/18/13 1” 


	 Loans are represented by “L” I in the coupon position, e.g., “C L 05/01/98”


	 A perpetual instrument is represented by preceding a pseudo maturity date with “P”, e.g.,  
“BMO 5.474 P12/29/49 D”. 


	 The month, day and year of maturity dates are always two digits, 0 padded if needed.  
Pseudo maturity dates are often “12/29/49”.


Fund	 For exchange traded funds the symbol is usually the exchange ticker.
	 Other fund symbols are mnemonics or acronyms built from the description of the index.


Future	 Future symbols are based on the exchange ticker.


	 Physical, financial and currency futures symbols use a one, two or three character root for the  
commodity followed by the standard month letter and single last digit of the year. If the commodity 
code is a single character, such as “W”, it is padded with a space so that it is always two characters


Index	 Major exchange indices usually use the common symbol, but the source is not always obvious, e.g., 
B-Pipe subscriptions “/DJI/INDU Index”, “/OPRA/SPX Index”, “/JT/TPX100 Index”.


	 Other index symbols are mnemonics or acronyms built from the description of the index. 


Option	 For future options use the ticker of the underlying future with a “P” or “C” appended, a space and 
then the strike price, e.g., “CDM8C 99.5”


	 For equity options use the ticker of the underlying equity, a space followed by the month or month/
day of expiration, a space and then a “C” or “P” with the strike price appended.  E.g. “IBM 10 C140”.


	 All strike prices drop trailing 0s and decimal points, e.g. ,“15.15” is “15.15” but “15.10” is “15.1” and 
“123.00” is “123”.


Warrant	 For listed warrants with an official exchange symbol, the exchange symbol is used.  


	 For warrants that are not listed, or that do not have an official symbol, the value is algorithmically  
generated by Bloomberg using rules that vary by issuer.
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Cross Referencing Field Names across Products
BSYM identifiers can be used to map real time data from B-Pipe or Bloomberg’s Server API to Bloomberg’s Data 
License reference data and corporate actions products.


Field ID (FLDS)	F ield Mnemonic (DL / API)	 B-Pipe Field	 BSYM Field
DS002	 NAME	 Reference.Security.ID.Name	 Name
ID059	 ID_BB_UNIQUE	 Reference.Security.Bloomberg.UniqueID	 Unique ID
DS213	 SECURITY_TYP	 Reference.Security.Type	 Security Type
DS122	 MARKET_SECTOR_DES	 NA*	 Market Sector
DY003	 ID_BB_SEC_NUM_DES	 Reference.Security.ID.Bloomberg.Symbol	 Ticker
DX282	 FEED_SOURCE	 MD.Source	 Pricing Source
ID122	 ID_BB_SEC_NUM_SRC	 MD.Security.ID.BSID	 BSID
*Reflected in the message type of the B-Pipe reference data message


Examples of BSYM Identifiers across  
Markets and Security Classes


Equity (Single Currency per Listed Market):	


Column Heading	 IBM (US Composite)	 IBM (NYSE)	 IBM (German Composite)	 IBM (Berlin Exchange)


Name	 INTL BUSINESS MACHINES CORP	 INTL BUSINESS MACHINES CORP	 INTL BUSINESS MACHINES CORP	 INTL BUSINESS MACHINES CORP


Unique ID	 EQ0010080100001000	 EQ0010080100001000	 EQ0010080100001007	 EQ0010080100001007


Security Type	 Common Stock	 Common Stock	 Common Stock	 Common Stock
Market Sector	 Equity	 Equity	 Equity	 Equity
Ticker	 IBM	 IBM	 IBM	 IBM
Pricing Source	 US	 UN	 GR	 GB
BSID	 399432473346	 627065740034	 395137622225	 1623498268881


Equity (MiFID On Book):


Column Heading	 LLOY (London Listed - GBp)	 LLOY (PLUS - GBp)	 LLOY (Chi-X - GBp)
Name	 LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC
Unique ID	 EQ0011242800001000	 EQ0000000005037071	 EQ0000000002865282
Security Type	 Common Stock	 Common Stock	 Common Stock
Market Sector	 Equity	 Equity	 Equity
Ticker	 LLOY	 LLOY	 LLOY
Pricing Source	 LN	 PZ	 IX
BSID	 678605350662	 1997163581670	 2005750482138







©2010 Bloomberg Finance L.P. All rights reserved.  38331632 0310 7


Equity (MiFID OTC):			 


Column Heading	 LLOY (London OTC - GBP)	 LLOY (Chi-X OTC - GBP)	 LLOY (London OTC - Euro)	 LLOY (Chi-X OTC - Euro)


Name	 LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC	LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC


Unique ID	 EQ0000000005002180	 EQ0000000005002180	EQ0000000005103164	 EQ0000000005103164
Security Type	 Common Stock	 Common Stock	 Common Stock		 Common Stock
Market Sector	 Equity		  Equity	 Equity			   Equity
Ticker	 LLOYGBP		  LLOYGBP	 LLOYEUR		  LLOYEUR
Pricing Source	 XJ		  XC	 XJ			   XC
BSID	 6111741723983	 6064497083727	 6111741807243	 6064497166987


Commodity/Index Future (With Sessions):		


Column Heading	 LCJ0 PIT (CME)	 LCJ0 ELEC (CME)	 LCJ0 COMB (CME)
Name	 LIVE CATTLE FUTR  Apr10	 LIVE CATTLE FUTR  Apr10	 LIVE CATTLE FUTR  Apr10


Unique ID	 IX8013948-0	 IX8013948-0	 IX8013948-0
Security Type	 Physical commodity future.	 Physical commodity future.	 Physical commodity future.
Market Sector	 Comdty	 Comdty	 Comdty
Ticker	 LCJ0	 LCJ0	 LCJ0
Pricing Source	 CME	 eCME	 cCME
BSID	 614188830019	 2078772677955	 9981512502595


Single Stock Future:		


Column Heading	 Daimler May 2010 (LIFFE)	 Daimler May 2010 (Eurex)	 Daimler May 2010 (Milan)
Name	 DaimlerChrysler AG May10	 DaimlerChrysler AG May10	 DaimlerChrysler AG May10


Unique ID	 EF12666074700074186777	 EF12399952420074448897	 EF12666075260074186844
Security Type	 SINGLE STOCK FUTURE	 SINGLE STOCK FUTURE	 SINGLE STOCK FUTURE
Market Sector	 Equity	 Equity	 Equity
Ticker	 DCX=K0	 DCX=K0	 BDCX=K0
Pricing Source	 LIF	 EUX	 SM
BSID	 609900809283	 279182846813	 476756828955


Corporate Bond: 		


Column Heading	 GS 7.5 02/15/19 (TRACE)	 GS 7.5 02/15/19 (German Composite)	 GS 7.5 02/15/19 (CBBT)


Name	 GOLDMAN SACHS GROUP INC	 GOLDMAN SACHS GROUP INC	 GOLDMAN SACHS GROUP INC


Unique ID	 COEH7068206	 COEH7068206	 COEH7068206
Security Type	 GLOBAL	 GLOBAL	 GLOBAL
Market Sector	 Corp	 Corp	 Corp
Ticker	 GS 7.5 02/15/19	 GS 7.5 02/15/19	 GS 7.5 02/15/19
Pricing Source	 TRAC	 GR	 CBBT
BSID	 631369281816	 395146080536	 665729020184
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Mortgage:		
Column Heading	 FNCL 4 4/10 (Bloomberg Generic)	 FNCL 4 4/10 (Composite Bloomberg Bond Trader)
Name	 FNCL 4 4/10	 FNCL 4 4/10
Unique ID	 MG%3278ACK	 MG%3278ACK
Security Type	 MBS 30yr	 MBS 30yr
Market Sector	 Mtge	 Mtge
Ticker	 FNCL 4 4/10	 FNCL 4 4/10
Pricing Source	 BGN	 CBBT
BSID	 12894812880	 665729841872


Preferred:
Column Heading	 RBS CAPITAL FND TRST VII (US Composite)	 RBS CAPITAL FND TRST VII (NYSE Preferred)	 RBS CAPITAL FND TRST VI (US Composite)	RBS CAPITAL FND 


TRST VI (NYSE Preferred)


Name	 RBS CAPITAL FND TRST VII	 RBS CAPITAL FND TRST VII	 RBS CAPITAL FND TRST VI	 RBS CAPITAL FND 


TRST VI


Unique ID	 PFEP0109264	 PFEP0109264	 PFEP0093955	 PFEP0093955


Security Type	 PUBLIC	 PUBLIC	 PUBLIC	 PUBLIC


Market Sector	 Pfd	 Pfd	 Pfd	 Pfd


Ticker	 ABNA 6.08 P12/31/49 G	 ABNA 6.08 P12/31/49 G	 ABNA 6.25 P12/31/49 F	 ABNA 6.25 


P12/31/49 F


Pricing Source	 US	 SNY1	 US	 SNY1


BSID	 399432238302	 618475570398	 399432238212	 618475570308


Government Bonds:
Column Heading	 T 7.5 11/15/24 (Standard Chartered)	 T 7.5 11/15/24 (Citigroup)	 T 7.5 11/15/24 (Credit Suisse)


Name	 US TREASURY N/B	 US TREASURY N/B	 US TREASURY N/B
Unique ID	 *	 *	 *
Security Type	 US GOVERNMENT	 US GOVERNMENT	 US GOVERNMENT
Market Sector	 Govt	 Govt	 Govt
Ticker	 T 7.5 11/15/24	 T 7.5 11/15/24	 T 7.5 11/15/24
Pricing Source	 SCBX	 CGUK	 CSFB
BSID	 12004433733107	 5063766582771	 5059471615475
* In some cases Unique ID is blank due to the value being based on a proprietary ID.  New IDs are being assigned and will be updated soon.


Currency:
Column Heading	 USD-EUR X-RATE (Tokyo Composite)	 USD-EUR X-RATE (New York Composite)	 USD-EUR X-RATE (CBA Bank)	 USD-EUR X-RATE (8am Fixing Rate)


Name	 USD-EUR X-RATE	 USD-EUR X-RATE	 USD-EUR X-RATE	 USD-EUR X-RATE
Unique ID	 IX430979-0	 IX430979-0	 IX430979-0	 IX430979-0
Security Type	 CROSS	 CROSS	 CROSS	 CROSS
Market Sector	 Curncy	 Curncy	 Curncy	 Curncy
Ticker	 USDEUR	 USDEUR	 USDEUR	 USDEUR
Pricing Source	 CMPT	 CMPN	 CBAX	 F080
BSID	 425201809525	 416611874933	 12648678733941	 14289356241013
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Index Option:


Column Heading	 June 10 Puts on SPX (US Composite)	 June 10 Calls on SPX (US Composite)
Name	 June 10 Puts on SPX	 June 10 Calls on SPX
Unique ID	 IX6956513-0-1400	 IX6956509-0-9400
Security Type	 Index Option	 Index Option
Market Sector	 Index	 Index
Ticker	 SPX 06/19/10 P800	 SPX 06/19/10 C800
Pricing Source	 US	 US
BSID	 399438708018	 399438708043


Equity Option:			 


Column Heading	 April 10 Calls on VOD US (US Composite)	 April 10 Calls on VOD US (AMEX)	 April 10 Calls on VOD LN (LIFFE)	 April 10 Calls on VOD NQ (EUREX)


Name	 April 10 Calls on VOD US	 April 10 Calls on VOD US	 April 10 Calls on VOD LN	 April 10 Calls on VOD NQ


Unique ID	 EO1016052010040181900001	 EO1016052010040181900001	 EO101605201004038DC00006	 EO101605201004028F000002


Security Type	 Equity Option	 Equity Option	 Equity Option	 Equity Option
Market Sector	 Equity	 Equity	 Equity	 Equity
Ticker	 VOD 04/17/10 C12.5	 VOD 04/17/10 C12.5	 VOD 04/16/10 C110	 VOD 04/16/10 C120
Pricing Source	 US	 UA	 LIF	 EUX
BSID	 399444460111	 523998511695	 609900043157	 279187460380
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CAPITAL STRUCTURE ON BLOOMBERG 
 
 
Use CAST <GO> to display a selected company's liabilities and the amount owed to investors at each level 
of the company's capital structure.  


This provides transparency into how creditors may be paid in the event of the company's bankruptcy. 
Typically, secured lenders are paid first, followed by senior unsecured lenders, subordinated lenders, junior 
subordinated lenders, and finally, shareholders. CAST also displays information on the corporate structure 
of the company, such as the subsidiaries.  
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Choose an applicable security and enter CAST <GO>.   


To filter the debt by currency, choose the appropriate option from the amber dropdown to the right 
of CURRENCY.  To display the graph with a Log Scale or Linear Scale, choose the appropriate 
option from the amber dropdown to the right of GRAPH.  


To view the underlying individual securities or as-reported financial data, click on the data label or 
the accompanying shaded bar. 


Additional elements of the company's corporate structure are displayed in the lower half of the 
screen. Clicking on [-] or [+] to the left of the appropriate category will collapse or expand each 
category.  
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Yellow: Debt disclosed in company 
filings, but not included in Bloomberg's 
security database. The data displayed 
has been confirmed by the company. 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Orange: Insurance and 
investment contract liabilities that 
are disclosed in filings. 


Aqua: Preferred shares. 


Purple: Data that comes from 
financial filings, such as operating 
and/or capital leases, deposits, 
pension obligations, and accounts 
payable. 


Pink: Municipal debt. 


Blue: Represents the market 
capitalization as of the previous 
day's close. 


Violet: Represents asset-backed 
and mortgage-backed debt that is 
part of Bloomberg's security 
database. 


How to Interpret Bar Chart Colors 


Display Security Detail Information  


Green: Debt included in the 
BLOOMBERG PROFESSIONAL® 
service's security database. 


FA<GO> from CAST will display the company’s 
financial history, indentify trends and gain data 
transparency to assist in analyzing the value of a 
potential investment, partnership, or acquisition. 


Clicking on a data 
label or shaded bar on 
the Capital Structure 
screen will open either 
a Security Detail 
Screen or FA<GO>.   
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Systemic risk in ffnancial networks 


by Lany Eiwmberg' and Thomas H. Noea 


S1-f. We consider default by firms that are past of a single clewing mechawm ' . Theobligt+ 
tions of all h within the syetem s.re determined Sirmtltmeoualy in a fashion cox&tmt with the 
priority of debt claims and the Iimfted lrability of equity. We first show, vis a fixed-p&it argument, 
that there alwayrr exists a "clearing payment vector'' that clears the obligations of the members 
of the clearing system; under mild regularitv conditions, thja clearing vector is unique. Next, we 
develop an algorithm that both dears the financial network in a computationally efficient fashion 
and providea information on the systemic risk faced by system Arm. Finally, we produce qualitative 
comparative &ti= for financial networks. T h e  comparative statics imply that, in contrast to 
singl4irm resnlki, unsystematic, nondiiipative shocks to the system will lower the total valuc of 
the network and may loww the value of the equity of some of the individual network firms. 


We would like to thank the partiepants in the 1999 Discrete Mathematics and Computer Science 
Confcrenm on New Market Models for many helpful commcnki on an earlier draft of this paper. 
Comments by Isaac Sonin and Tom= Slivnik, were particTilary appreciated. The usual disclamer 
appliea, 







Systemic risk in financial networks 


1 mrodnction 


One of the most pearssive espects ofthe contemporary financialenrrironment is the rich network 


of inbrnnnectioM among firma. Although fhulcial liabntiea owed by OILe !inn to moth are 


usually modeled aa unidjrectid obligations dEependent only oq the Bzzmcid health ofthe k d n g  


firm, in reality, the liability structum of aqornte obEgatbm is invsrisbly much more intricate. 


The due of most firma is dependent on the pay05 they recei.Eefmm their claims on &ha firma. 


Tbe d u e  of theseclaimsdepends, in turn, on the h d d  Wthofyet other firmsin thesystem. 


Moreover, hkagsbetwem firms canbe cyclid A default by fhpl A onits obligations to firm B 


may lead B to defsut on ita obligationst0 C. A default by C may, in turn, have sfeedbsck effect 


on A. Thus, financial syshm architechnes may exhibit cyclical depadence in inte&rm obligations. 


We consider the problem of finding B clearing mechanism in c89e8 in which this sort of cyclical 


imxdepndence is pmmt. 


All markets have m e  kind of cleaain@; mechanism. Perhapa daring mechanisms for inter- 


bank payments a d  for listed exchmgw h s v e d v e d  t h e m  &Won. In the United Statea, for 


example, CHIPS and Fedwire are the main banking clearing mechantsms; in Germany, the Abrech- 


mmg and the EAF (Etektronbhe ATJ rechnung mit Fiktrader) perf- thia functiin. Rq&ing 


clearing mechsnipm, one of the attrwtiicms of trading on ahted options exchange, the CBOEfor 


example, is th& the Options Clearina, Corporaticm is the counterparty to every trade. Hence credit 


considerations do not prohibii lower credit traders from participating in these markets. Them pay- 


ment systems are forced to cvnfiont large defaults on a regular basis. Fixamplea of such defaulta 


include the failure of I.D. Hemtatt in 1974 end the Bank of New York overnight shortfall of $12.6 


billion dollars in 1985. Sydam-wide meltdowns also occur. For example, consider the collapse of the 


Tokyo realastate market, the bsnkn;lptcyand public bailout of American 5&T9 tothe mst of about 


$KObill iondouarSandtheVeneeuelen~~ofl994. OneofthemostintereStingfiriluresof 


a tightly intercomectd clearing system was the 1982 dlepse &-Mad& Stock Market in K d t .  
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The claaring system, consisting of app lmimatdy 29,ooo pcst-dseed checks writteu by trrtders, col- 


lapsed aftar a 40 percent drop in market palurs. The uominal gmss Wilitiea ofthe participants 


in the market to each other at the time of the collapse waa more than four tima Kuwait's GDP 


(W, Girgis, and Kotob, 1997). 


Surprbbgly, deapite the obvioua importance of the "architecture of &umcial W g d  for deter- 


mining the retm-generating process for finandal ma&, little has been written on cyclical financial 


mterconnections. Bilateral clearing haa been thmughly analyeea in M e  and Huang (1996). Rm 


&et and Tirole (lm) d y z e d  the incentive and monitoring impact of an interbank loan. Emm 


a more empirical paqmtive, Ana;elini and Russo (1M) develop aa empirical model of intermr- 


m t e  defadts. In this mcdel, the probability that a default by one firm triggera another firm's 


default is exogcmoualy apeciiied without modeling i n t a r w m  cash flaws. Eli-, Gi, and Kw 


tob (lW) report the actual procedure usad to clear intercorpora te debts after the Kuwaiti stock 


market d. However, to our knowledge, this paper is the first to analyze, in a general W o n ,  


the properties of intercorporate cash flows in financial systems featuring cyclical obli@ions and 


endogenomlydetermined clearing vectors. 


I%is lack of attention to cyclicality is even more surprising given the extensive literature mod- 


cling default in a simple imidirectional and bilateral context. In fact, thc whole literature on term- 


structure of inkrest rates ignores the considerations mentioned above. While mode%ng thc valnation 


of a firm's debt BS independent $om that of other firms simpIifiw debt and cquity models, thirr &Y- 


mpt ion  becomes que6tionable in portfolio management, corporate bond trading and the analysis 


of counterparty credit risk. The aim of this paper ia to investigate the propagation of risk through 


clearing SJrStems and the effects of this risk propagation on the return-generating p m  of system- 


participant& A desideratum for the fiitilre development of these linea of march is thc development 


of a simple, tractable model for compnting cl-g vectors for intraiinkal finencial systems. Thc 


aim of this paper is to provide such a model. 
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We develop a fairly general model of a clearing system. The model satisfies the stand& 


conditiomi on clearing vectoss imposed by bankruptcy law: proportional repsyments of liabiitiea 


in default, limitd liability, and absolute priority. We shall show, via a flxd-point argument, that 


there always exists a "clearing payment vector," consistent with these conditions, that m e a  


the payment made by each node in the system. Moreover, under mild mguhity ariditins, this 


clearing vectar ia unique and may be chma&md . in two wrays. First, it is the limit of a Bnite 


sequence of clearing vectors produced by "8ctitious sequential default" algorithm. This algorithm, 


as well as quickly yielding the clearing vector, producea &natural metric for examhbg the systemic 


risk exposure of firms in the 6riancial system. Second, the cleering vector msaimizes the weighted 


average of ffrm paymenta regadka of weighting -e. Our results demonstrate that any clearing 


payment vector maximks both the cen&a-the-dollar repaid and the total repayment8 to creditors. 


Afta analyzing the clearing vector, we perform comparative statics on the clearing payment 


vector, dekminhg the nature of its dependence on the vector of exogenous cash infusions as well 


as on the architecture of fhmcial liabiitiea linking the vrvious members of the system. More 


speci5cally, we show that the ckxwing payment vector is a multidimensional concave function of 


operating cash flm and the level of nomid  payments, and thitt the d u e  of equity is not generally 


convex in cash flow. These results imply that the total d u e  of fhma in the qstern is concaw in 


exogenous cash flows. In tm, this increased comvity impliea thst i n d  volatiiw, by lawering 


expected inter5m payments, will lower the total value of nodes in the system, even though there am 


no cats to insolvency in our modeL (And thus the real economic effect of such a shock is nil.) Our 


results suggest that using changes in total as& values to measure the effect of an economic shock 


on a group of tightly intercoMected compenies ( e.g., Japanese banks) cm be highly misleading. 


The paper is organized as follows. In Section 2, we present the model and develop the basic 


machinery, including existence uniqueness results. In W o n  3, we present the two C h a ~ ~ k h t i ~ ~  


of the clearing vectors and examine their comquences. In Section 4, we deriw comparative statics 


of the clearing system. Section 5 concludes the paper and considers some exteusiom 







i 
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a lhmework and basic results 


2.1 x+&nim t-ie8 


Let 818 represent lulimensianal Euclidean vector space. Let N = {1,2, ... a}. For any two 


vectonr x, II E 818, define the lattice opaaticms 


x v II := (=[zI,IIII~=[Q, yzl . . . m 4 % , ~ &  


Let 1 rep-t an n-dimensional vector, all of whae components equal 1, i.e., 1 = (1 ,..., 1). 
S i l y ,  let 0 represent an rtidimensional vector, all of whoss components qual 0. Let I[. Ill den& 


the t'-normon W. Thai is, for each x E W let 


R 


ll4h := Clzal. 
i=l 


For each n x n matrix, M, let AM) represent the spectral radius of the &k, the eigemalue of the 


W r i x  of maximal absolute value. With tach linear tramform de6ned on P there is an anwciated 


nxnmatr i xM.  L e t [ [ ~ ~ ~ ~ ~ ~ b e t h e o p e r a t o r m a t ~ N o n n a s s o C i a t e d w i t h ~ ~ ~ ~ [ ~ .  'I'hatiri,foreech 


n x n matrix, define 


It is well known that [e.& Horn and Johnson (1985) 55.6.4, page 2941 that, for any n x n matrix M, 


we have 


An important deEnition for our future ~nalysk is of a non-expansive map. A map T: P + En is 


(t')-nonexpan.sive if. Vz E 8". 


llT(z) - T(dI!I 5 '1% - 8111. 


Whenever an ordering of elements of ?Rn is specified in the sequel, the ordering refers to the p o i n t w k  


ordering i n d u d  hy the lattice operations, Le., 
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2.8 Emoms3 fhnuwmk 


Conaider an economy populated by ~t n o d s  Esch ofthwe nodes is to be thought of a distinct 


econOmc entity, or "financial node" participating in the clearing network. Each such entity may have 


nominal liabilities to other entities in the system. These nominal liabilities repment the promised 


payments due to other nodes in the network. We repiwent this S ~ N ~ ~ U C E  of liabilities with the n x n 


nominal liabilitiea & L, where &j reprwenta the nominal liability of node d to node j .  As the 


notion of nominal claims seems to imply, we amme that all nOminat claims are nonnegatke and 


that no node has a nominal claim a@mt itself: In order to reflect this economic inhpmtation, we 


spec% that the nominal liabilities matrix is non-negative and that all of the diagonal elementti of 


thematrixequd 0; that is, we - t h a t V i , j  EN,L*j 2 0 and t ha tVi ,& = 0. Let ec 2 0 


be the exogenom opemting inmine received by node i from 80- ''outaidc? the clearing system. 


Operatin@; i n m e  can be viewed as the cash flowa thrown &by the real assets controlled by the 


node. A financid system is thus a pair (L, e), consisting of a nominal obligaiiona matrix, L and an 


operding income vector e, satiafying the mnditions given above. 


Let pr represent the total dollar payment by node B to the other nodes in the system. Let 


p = (Pt,pz,. _. ,pn) repretent the vector of total paymenfa made by the noden Let fjj r e p m t  total 


nominal obliffstion of i to all other node, that is, 


Let ps @,%, . . . ,&) r e p m t  the 8sBoci&ted vedor, which we will term the total obligation 


vector. This vector rep- the payment level required for complete d i i o n  of all contrsdual 


liabilitiea by dl nodes. Let 


otherwise 


and let 11 mpresent the corresponding ma% which we will term the mWve LiabiIitiea ma$&. This 


~ r i x  captures the nominal liability of one node to another in the system aa a proportion of the 


debtor node's total liabilities. We wmme that all debt chima have equal priority. This equality of 


priority implies that the papent made by node Z to node j is given by &&j. This implie that the 
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the totd payments received by i are equal to ~ ~ ~ l ~ j p j .  Further, d payments ere made to some 


node in the system and therefure, 
n 


3-1 
vi, cnij = 1, 


or, in matrix notstion, 


II1= 1, 


equality we will use later in the analyak. 


The total cash Bow to the owners of the equity of node i equals the sum of the papex& received 


by other nod= plus the oper&ing income leas the payments me& to i's creditors. This impliea that 


the value of node i equity wals 


Note also that, by using (1) and (2), the financial system (&,e), where L is a nominal payments 


matrix and e is a vector of operaKmg incomes, can be quidently dewxibed by the corresponding 


triple @,@,e), where II is a relative Eabjlitii matrix, @ is a total Eabiity vector and, e is an 


operating income vector. We will this defmiption of a fhmcial system in the auheqiient analysis. 


Intuitively, a ciearing payment vector for the financial system should represent a specification 


of the payments made by each of the nodes in the financial system that is consistent with the legal 


rules allocating cash Rows among nodes and among holders of debt and equity. ??me criteria which 


must be satlsfed are (a) limited IiabiIiLy, which require8 that the total payments made by a node 


mimt never exceed the cash flow adlahle to the node, (b) the priority of debt claims, which requires 


that 8torkholders in the node receive no value until the node is able to compietely pay off all of its 


oiit.qhnding liabiities, and (c) proportionality, which requires that if default by occurs, all claimant 


nodes arc paid hy the defaiilting node in proportion to the size of their nominal claim on firm assets. 


Them desiderata m o t i n k  the following definition. 


Definition 1. 


that sat,ib&ies the following conditions: 


A dearhg payment vector for the financial system (II,p,e) is a vector p* E [O,p] 
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Figure 1. A F i c i a I  sysfm 


The above diagram depicts aflnancialsystem The system m n s h  of 4 nodes Iabeld 1,&3,and 4. 
Beside each node is a record of the opemti i  income it r d v e a  (e) and the total payments, p, it 
is con!xa&d to make with the other nodes in the system The mows between nodes indicate that 
the source node bas an obligation to the target node. When such an obligation 8dsts between two 
nodes, say i and j ,  the label I&$, denoting the proportion of 3's total liabilities that are attributable 
to debts to j ,  is placed beside the anow. 


a Limited Liability. Vi E N ,  


b. Absojute Prior& Vi E N ,  either obIijqi$ions are paid in full, that is, p: = &, or all cash flows 


are paid to creditors, that is, 


in Figure is pm A deming payment vecbr for the financial system illustrate d by the 


vector p" = (0.20,0.95,0.u), 0.60). This vector calls for Node 1 to pay 0.20 to the other nodes. 


Bscaw II,, = 1.0, this payment is received entirely by node 2. Node 1 &vea no inflows from 


other nodes in the clearing system; thus, Node 1's total inflows are given simply by ita ope&& 


i n m e  of 0.u). Node 1's payment of 0.20 is less than its total ob&@iom of 1.00. Consistent with 


absolute prioety, the clearing trector thus requim Node 1 ta pay out all of ita cesh flows. Node 2's 


payment under the clearing payment vector is 0.96, which is less than 2's obligated payment of 1.20. 
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BetaweII~ = 1, this papent is received artiFaly by Node 3. Node 2 reeeivesinflcRw both fcomNade 


1 and from Node 4. The clearing vector CaIlS for Node 4 to pay Node 2 pZ& = (O.eO)(O.%) = 0.46; 


as explained above, Node 1 pays Node 2 0.20. Thus, for Node 2, the total Mows from other nodm 


plw oparating income equd 0.4 + 0.20 + 0.30 = 0.96. Again, amsistant with labsolute priority, all 


of Node 2's inilo4ls an! paid out to c d i t m i .  Node 3's paymeat under the clearing psyment vector 


is 0.20, which is equal to Node 3's obligated papnent. E3ecantsa Ig, = 1, this paymmt is received 


ttntirely. by Node 4. Node 3 reoeiws Mows both from Node 2 and Node 4. The Mow &om Node 


2 equals 0.95, the payment made by Node 2 undw the equilibrium d m  paymeat vector. The 


Mow h m  4 equ$s 0.16, 0.26 of 4'8 de&@ payment of 0.60. Thus, the d u e  of Node 3's equity 


is 0.10 + 0.96 + 0.16 - 020 = 1.00. Node 2 reaivea a payment of 0.60 from Node 4 , b  than Node 


4's obIi@ payment of 0.80,0.16 of this payment goes to Node 3 md the remainder of 0.46 g m  


to Node 2. This payment exwtly equcrls 4's cash Mow, whichmnsistS ofopeoeting i n m  ofO.40 


and a payment of 020 from Node 3. Note that the 5nancid sanff,em being modeled is co-ve 


in that wealth is neither created nor destroyed by the cleaing proms. Rather, the clearing process 


8pm to diskihiite the 1.00 m operating income, reoeived by the financiaI sy&m as a whole, acrms 


the nodes. In this cam, the entire balsnce is distributed to Node 3. 


2.8 Basic network rm&xtun! 


Definition 2. A set S c N is a surplus set if no node in the set has any obligations to any node 


outside the set and the set hss pmitive opecatii income, that is if V(d,j) E S x S, = 0 and 


C d C S  ei > 0, II 


Lemma 1. If p" is a cJesriog vector, then it is not po&ble for all node in a surplus set to have 


zero equity d n e .  


Proof. Suppose S is a mirplm set. Let qt represent the sum of all of the payments received by a 


node i E S from ncdea in S'. By the definition of surplus set, nodes in S make no paymenfs to 
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nodes in 9. Thus, i fd l  nodesin Shave zeroequity value, it must be thecase that 


pa = C%Pj fed  + q, vi E s. 
j € S  


Summing the equations specieed in (3) over i E S thus yields 


using the fact that s is a surplus set, we also have that 


E%==, Vi€S. 
iE8 


Exprersions (4) and (5) imply that 


9 


contradictii our assumption that ZEs ec > 0. 


E!&&lishing existence and uniquene~~ of cleatkg veciors requires that we preaent simple facta 


about the yarchitecture” of the Bnancial system. The existence of a pasitive Wity mnnecting two 


nodes in the system provides a conduit through which the risk of the debtor node can he transferred 


to the creditor. If we abstract from the magnitude of them exposmx, we are left with a deacription 


of the ffnancid system 88 adirected graph in which each debtor is Iinkd via adirected edge to each 


of his crdim. These idem are formalizd Mow. 


Dehition 5. The financial atntcture graph d a t e d  with the hancial S t ~ c t U r e  (&@,e) is the 


directed multigraph whose Vertices we the nodes of the financial network, N, and whose edgea ace 


d e h e d b y i - t j  H J & j > O . l  II 


The direct liabilities of each node in the system are to the ndea to which the agent has 


contradual obligations. However, them direct links by no means exhaust the set of all nodes that 


The teehnidd~inction between adirmt&d graph and adirected multigmph is that in a directed 


graph, there is, at mast, one directad &e connecting any OrPo nodes. In a directed multigraph, any 


number of edges can connect nodes. 







are affect4 by a node's default. Defaults @e through the system, the default of a single node, 


redurn the inflows to its creditma, perhaps trig&ng the default of one of these rreditors, and 


even, perhaps, defaults *her dcffpnstresm. How far dwnstream can the risk of a given node in 


the system travel? An upper bound on propagation is provided by the concept of the rink orbit of a 


node in the system. The risk orbit of anode is the set of rdl nodes which are connected to the given 


node through some directed path, however circuitous, through the system. 


Definition 4. For each node d E N, define the risk orbit of node i, denoted by c(i), as follows: 


o(i) = { j  E#: there exkts adirectad path from $ to j } .  II 


In the financial qmtem illmtrated in Figure 1, the risk orbita of the nodes are given as follows: 


41) = t1,2,3,4) 42) = {2,3,4) 


4 3 )  = {2,3,4} o(4) = {2,3,4). 


The strong& sort of systemic inMependency, from the qualitative point of view we are cur- 


rently pursdng, is for every node to be in the risk orbit of every other node, that is, for the 


financial structure graph induced by the financial system &I,@, e) to satisfy the following condition: 


V(i,  j )  E N x  N, i o(j). When this condition is aatiified we will say the fmsncial system is Xtmngly 


interJinked. When a financial system is strongly interlinked, sh0Ck.i hitting any node in the system, 


can bo passed, perhaps t h n g h  mme very indirect routes, to any other node in the system. Becssue, 


the financial system presented in Figure 1 is not strongly interlinked, shocks to Nodes 2, 3, and 4 


cauoot &t Node 1. HorveEr, simply introducing, say, mme obligation of Node 4 toNodc 1, would 


render the system atrongly interlinked. 


It mnld appear that, becaw they &tract from the xnagnitiide of exposures, alncepta such 


aa strong mnnmtdnw and riak orbits are incapable of providing any i ~ f d  chas.acteriZation o€ 


clearing payment vectom for the system. This b not c o r r d .  In fact, a very simple property of risk 


orbita forms the basis for onr proof of the imiquenm of the clearing payment vector. 


Lemma 2. Suppose that p" is a clearing vector for (lT,@, e),  Let o(i) he a risk orbit that satisfies 







PrmE First note that o(i) is amnplus set. 'Ib see this, note that if some node, say i' in o(i) owed 


something to a node j E dip, then, by appending to the directed path from f. to i' the edge a? + j ,  


one could construct adirected path h m  d to j ,  wntradictbg the amumption that j is not in o(i). 


Lemms 1 shaws that tmrysurplm set w& anode with positive equity value. CI 


The intuition underlying Lemma2 is dear. No financial Dshock" can be absorbed by a bankmpt 


node of the 5ancX SyStRm- The shock must be transfefied, initially perhaI#i to other bantrErrupt 


nodes, but ultimately through some directed path@) through the system to a solvent node. In the 


example considered in Figure 1, the lemma implies, since Node 3 is the only solvent node, that all 


&her nodea wnt&Node 3 within their risk orbits. This is indeed the casa, 88 c&~l be seen fmn the 


risk orbits computed ahwe. 


E.4 E & t m o e / U & ~ e s s  of a de&q pagtment twtm 


Limited liability and priority imply that p' E [O#] is a clearing merit vector if and 


only if the following condition holds: Vi EN, 


The clearinlg payment vector, pmS is thus s&ced point ofthe map, Q,(.;II,p,e): [O,d -f [O,& deaned 


bY 


Q,& U,p, e) (IITp + e) A p. 


An ewnomic interpr&&irm of CP is that Q,(p) repwxnta the total fun& that will be applied to sstisfy 


debt obligations, amuming that ncda receiw infknwc speciaed by p from their debt claims on other 


nodes. The basic propertia of the @map are reccnded in the following lemma. 


Lemma 3. The map Q, is p't im, h-, canatve, and nonexpsnsivt?. 







Each of the regdarity properties of the CP map has a fairly straightfolprard interpwtim. 


The fact that the map is positiw just says that as long as infim from the obligations of other 


nodes are positke, the node wil l  itself make positive payout% Monotonicity raflects the positive 


interdependence of the links in the fhffnencial system. The larger the payout 8 node received from 


other nodes 011 their debta, the kger the payout the node can it& make to other nods. Concavity 


implies that increasing ''dipmion" in the m t u d e  of the variation in paym- made amom 


nodes reduces overall ability to py. Nonexpansivnes reflects the ''at&iIiQ" in the clearing system. 


An inerease in the input vector to the CP map never yields a change in the output vector that is 1- 


in absolute mmtude  than the change in the input. Instead, although individual components of 


the output vector may &row disproportionatly, the change in the overall output vector is no Iarger 


in magnitude than the change in the input vector. 


The previous lemmas Corm the havis for the Grst importRnt result of our analysis: a demomtra- 


tion of the existence of a clearing payment vector associated with every financial system, and of the 


uniqueness of clearing vectom under a fairly weak additional restriction that we. term uregularity.'' 


Definition 6. A financial system h regulsr if every risk orbit, o(i), is a surplus set. 


Lemma 4. The following conditions are each by t h d v e s  s&mt for R financial system to be 


regular: (i) all node8 have pwitive equity balancea or, {if) the system is stmngly interconnected and 


at least one node has a positive cR9h balance. 
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pmof. It follow directly from the deflnitiins of surplus set and stmng intermnn ection, that (i) and 


w, ensure m w .  


Intuitively, re(gularity meam that any maximal d subset of nodes of the 5nancia.l system 


has wme surplua to transter among thenodea ofthe system. The comhy show that this will be 


the case whenever the 5 d  system is strongly interlinked or each ncde is endowed with some 


trmsfemble surplus. 


Theorem 1. CXmwponding to  every firulncial systcrm (II,p, e), 


b. Under d clearing vectors, the d u e  of the e@ty at each node of the b c i d  system is the 


m e ,  thitt is, ifp' mdp0 me any two clearing vectms, 


(@(PI) + e -p)+ = (IF&",") + e -p)+. 


Proof. Let FIX(@) rep-t the set of 5xed points of @. Because Q is mcreashg, @(O) 2 0 


and @@) 5 p, the TBlski 5xed-point thwrem (see, e.&, &idler (1986) Theorem 11.E) implies that 


FIX(@) is non-empw and, m o m ,  pcrrzscres a greafmt and least element. Thus (a) is established. 


'Ibprove(b)letp'beanyclmringvector. W T e W i ~ s h o w t h a t t h e ~ u e o f ~ ~ i s t h e s a m e  


under p1 and p+. This is sufficient to establish (b) . 


To show that the d u e  ofequity is the mme underp' andp+, first note that @ is an in-ing 


map, 88 is the map z --f z V 0  = &. Thus, we must haw, because pf 2 p', that 







then we wodd have that 


Bearusep+ andp- are both clearing vectonr, it atso must be the a ~ s e  that 


Expressions (6), (7) and (8) imply that 


IJ?(p+) + e  - p+ >IF@) + e - p'. 
2 


Now, note tha  II 1 = 1. This implies that 


1. (IIyp+) - p + )  = 1 f (IF@') -#) = 0. 


. Thw, 


1. (n T t  (p ) + e -  p+) = 1. (fl(p') + e . ~ -  p'). 


However, (9) implies that 


14 


The contradiction bet.wen expression8 (10) and (11) establiihw (b). 


Two distinct clearing vectors producing the same equity values at all nodes i.i not possible if the 


financial systmn is regnlar. To see this, fimt note that bocame p+ and p' are distinct clearing vcctom 


and p' 5 pi, and bemuse, for all nodes i that have positive equity value p: = pi = pd, it must be the 


case that for mme i with zero equity valne, p: > d .  Regularity implies that the risk orbit of i is a 


surplusset. By Ifimmas 1 and 2, thereexifits adiredRd path i 7 io 3 i t  -f .. . it. 1 -+ il= j with 
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the property that the nodes $1.. . dt-1 are moquity-due nodes, and it = j is a pitiveerpity- 


d u e  node. Bemuse a csshfloars int0 5eroquit.y nod- are p i d  aut, &-I 3 ik, and p’ 5 p+, it 


follows that 


A,-, < P L  =$ P;, P L .  


l ’ h u s , ~ < p ~ i m p l i e a t h a t & l < p ~ - , .  &muse&-l+bi=j. Itfollwwthatthepaymentti 


received by j are higher underp+ than underp’. Since j has positim equity d u e  under both 


clearing payment “ctors, and the pymentsreceivadby jfmmother nodes cannot be eny d e r  


d e r p +  than they am underp‘ (becmeep’ s p + ) ,  it must bethearse that the d u e  of j ’s equity is 


strietly higher under p+ than it is under p-. Thhi mntmdicts @), and this eontrtmdetion eakiblishe 


W p- = p+, i.e., that (e) holds. 


Some intuition for the importance of regdarity for the uniqwma d t  is provided by the 


hllowiqeKample. Suptheaystemumtahstwunodes,  l andZ,anddncdehasaeen ,  


operatinp: income. Moreaver, each node has nominal liabilities of 1.00 to the other node. In our 


notation we hsve that e = (O,Or, p = (1, l), and 


This syetem is not sregular flnanciaqtikm, because the single risk orbit ofthe syatam {1,2} is 


not a surplus set. In this example, my vectca ofthe formpt = t(l,l),t E [O,l] is a dearing vedor 


forthesystem. In~trad,ifwemoditytheexSmpebygi~onecenttothefirstnodebysetting 


e‘ = (o.Ol,o), we 8ee that the unique clearing vector is gim by p” = (1.00,1.00). The payment 


vectors pt, t < 1, do not eat&& the sbsolute priority condition under gim e‘ because they leave 


Node 1 with an equity balance of 0.01 despite the fact thst Node 1 has not completely ssti4fed ita 


nominal obligation to Node 2. 


3 characteri5ingcleariIlg;vectors 


3.1 Seqp~?nce of &fad& 


In this seetion we show that the ckming vector can be viewed &s the prcduet of aaimulated 


or “fictitious“ default procespl. This pnxpss both permits the construetion of a simple algorithm 
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far identifying cleming vectors and produrn a natural metric for measwiq a node's systemic rlsk 


expanne. We Can this simple algorithm the ffetitiow defsnlt slpforithm. In essence, the idea behind 


the algorithm is strsightforwar. First determine each node's payout aawming that all other nodes 


slltisfy their obligations. If', under the assumption that all nodes pay fully, it is in fact the case that 


all obligations am satisfted, then tennina$e the slgorithm. If some nodes defanlt even when all other 


nodes pay, try to obvious the system again, assumkg that only these Ufirst-order" defaults occur. 


If only firseorder d&ulki occup under the new clearing vectar, then terminste the algxithm. If 


second- defaults occur, then try to clear again aaumbg only second order d&ub occur, eta. 


It is clear that since there are only n nodes, this pmwa must twninste after n iterations. The point 


at wbi& E node defaults under the akpithm is a measure of the node's exposure to the systemic 


risks faced by the clearing systan. 


D e s a i  the algorithm in detail and proving that it is efFectiw? qu i r ea  that we develop 


some new concepts. Let s be the set of supermlntions of the W-point operator 0; that is, 


6 = {p E [O,d : @(p) 5 p]. Note thilt, ibr any such supersolution, h w e  total equity d u e  is 


positive, it must be the case that at le& one node b not ddault, Le., it is not passible that 


@(p) @. For each p E $, let the default set under p ,  which we denote by D(p), be the set of 


nodes i, mch that @(p)i < p,. By the earlier observation, D(p) cannot contain all nodes. Let A(p) 


represent the n x n diagonal matrix dehed as follows: 


A@), is a diagonal matrix w b  d u e s  dong the equal 1 dong the diagonal in those cows r e p  


resenting nodes not in default under p ,  and equal to 0 otherarise. Thus, when multiplied by other 


matrices or vectors, the A matrix converts thc entries corresponding to the nondefaiilting node to 0. 


The complementary m a r k  I - A@) converts entries Corresponding to defaulting nodes to 0. For 


ked p' E S, define the map p --f FF,,t @) as follows: 
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This map, FF9@), simply returns, for all nodes not defaulting under fl, the mqukl payment p, 


and, for all other nodes, retnma the node's d u e  assuminp: that nondef'aulting nodes under p' pay 


in full, and defaulting ncdes under p' pay p .  By our earlier result, Lemma 1, the default set is not 


a surplus &. Thus, A(p)II has a row sum that is less than 1, and no row sum d 1, this, in 


turn, implies that Ppp, has a unique k e d  point by standard input-output m&ix resulta (Karlin, 


1959, Thanem 8.3.2). Call thia fixed point f"). Note that only when p' is a supersolution can 


we be aaqur&d that f(p') is well defined. Next, define inductidy the following sequence of payment 


vectonr 


p* =Is; # = fM-1). P) 


We call thk q'mce of vectors the iktitious dettult sequence, and we call the p- of producing 


these vectors the fictitious default algmXim. 


Lemma 5. The Editious default algorithm &ed in (FDS) produrn a well-defined sequgne of 


vectms, pf. Tbjsqence decmms to the clewing vedor in at most n iterations of the dgorith. 


proof. First, we show by induction that the fietitiow default sequence is well defined and decreasing. 


To show thia, we muat show that far all p', pf is a supmlution to 0 for all j and that the sequence 


($) decreases. We estsblish this result by induction. When j = 0, these aEserticm ace obvious. 


Next, suppose the assertions are true for $. Note that the definition of the A matrix implies that 


A($)$ + (I - A@))@ = $. Because is a supersolution to 0, it must be the cam that for 


all defauting nodes i, (IIpk + e)& 5 $. This implies, combiied with the definition of A, that 


G@) = FF@@). By the induction hypothesis, pk is a supagolution to 'P. Therefore, pk is a 


supemolution to FF+ This fad implies that $+I, the fixed point of FF#, is lesa than or equal 


to pk. Because $+I 5 #, the set of nodea at which default oeom must be no a m a h  under @ 


than under e'. Now, ifthe set of nodes is the same, then = FFp.($), and which implies, 


because by definition $+I is a fixed point of lT+@), that pk+l is a fixed pomt of 'P, and thus 


trivially a supasolution. If the set of defaulting nodes is larger under #+I, then some nodes that 


paid their obligations in full under pk default under @+I, and the rest of the nodes either default 
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under both payment vectonr or under neither. Thus, for these nodes such that default m r a  under 


F' but not $, &,@+')6 < &+I. For all other nodes, the &ued point conatruction implies that 


@+I)i =e'. Thus, we haw that is a supenrolution to 4 and that (pj) is a weakly decreasin$ 


sequence. 


As &own in the previous parsa;rsph, if the set of defaulting nodes is the same under both pi+i 


and p f ,  then (i) pi is a fixed point of 4, and (E) the sequence will remain constant afterpj+l. Jf$ 


fails tobe a m  point of the map 4, then anode that did not default under pi defaults underpf+'. 


In this case, the number of defaulthg nodes, speciaea in the next A matrix,will increase in the next 


iteration. Because there are only n nodas and et majt n - 1 can default in any supersolution, it 


must be the case that the payment vedor produced by the algorithm ceases to change after at most 


n iterations. Because the seque~ce is amstant only at fixed points the clearhg veetor is attained 


in at most II iterations. 13 


The fictitious default algorithm works ea follows. Fit, start with a trial solution which upecif3es 


that all nodes pay their obligations in fiill. E SII node are indeed abIe to sat* their obIig&ions 


amtiming that other nodm meet thein, then the algorithm terminab with a clearing vector. I€ mme 


node defaults under the Arst trial solution, fix the payments of the nondefaulting node under the 


f i t  trial solution at full repayment and solvc the lineax equationti that equate inflows and paymenb 


for thoge nodes that default& under the first trial solution. T h i ~  process generates a second trial 


solution. If no new defaults occur under the m n d  trial soIution, then the second trial solution 


is a clearing vector. However, in the second trial solution, the value of the nodes will be lower 


than at the firrt trial solntion because inflows will be given a smallcr payment vector. Thm, some 


nodes that did not default under the first clearing vector may default under the second. If defaults 


ocmir, then fix the payments of lhe nodexi that did not default under the second trial solution at 


full repayment and solve for the payments of the remaining node, etc. contintid iteration of this 


procedure prodiiw a aeries of payoff vec~ors that converge to the clearing vector. Because the trial 


solution only Chan@;es when a new default o m ,  convergenm mi& occur in at mast n rounds. Note 
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that for large networks, this procedure is much more efficient than the extenrcive procedure of solving 


the linear eqwtiorm that define the clearin@; vecta for all possible subsetg ofnodes, because thissort 


of axtensive procedure requires solving up to !P seta of hear +om rather than at mast the ~t 


hear equations that must be solved using the fictitioua debsut & c a i h  An example illustrating 


the flctitious default algorithm is provided Mow. The pscametars of the finsncial syatem are gim 


aa follows: 


Egample: Fft.tiewua default algorithm 


Fjnantid 


Steps in fietitions d W t  slgorithm: 


In the example of the flctitiom default algorithm, the initial solution, po, is set to full repayment. 


At this solution, Nodea 1 and 4 default. The next solution, p', set to equal the solution to the linw 


equetiomr that clear the system sssumfna; that only Nodes 1 and 4 default. At p', in fact, Node 2 


defaults in addition to Nodes 1 and 4. The next iteration solves for $, the dming vector arisuming 


that only Nodes 1,2, and 4 defeult. Under pa, in fact, 88 arwmed, only Nodes 1,2, and 4 do default. 


Thus, the default set dws not change and the algorithm terminates, producing the clearing vector 


in two iterations. 


In addition to being computa t idy  e5cient, the algorithm has an economic interpretation: 


The step in the algorithm at which a node is added to the dehulting set can be used 89 8 measure 
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of the node's finsncial heaIth. Nod= that defadt under the first trial SoIution are fundamentaIly 


insolvent beuwse they cannot snrvive even with no systemic risk expcsute. Nodes thst frtil in the 


nex& wave are quite fragile in that they fsil whenever insolvent nodes fail. 'she third- 


order failures are triggered by the Mure of w e ,  but not - unsound nodes, etc Thus, 


nodea are partitioned by the algorithm into solvent nodm and 1,2 . . .n - 1-th order failnres. Thus, 


the algorithm, combined with Monte Carlo simulation of income of the nodes, e, oan be 


used to construct a probabiity distrib~ion over orders of defanlt for each node acdJociBted with the 


given stochastic shock to exogenous income. This distribution could form the basis for a practid 


metric for syataniorisk exposure to nodes in a financial network. 


. .  9.8 Prographmig - 
Next we will shuw that clearing merit vectors mu be identified by mlving aIm& any p 


g r y  problem that places weight on paymenta by aU nodea in the system Bubject 


to the limited liabfity condition. Formidly stated, we &sgoci&te with each finandal ays&?m (I&& e), 


and each function f : [O,p] 3 R, the programming is problem 


PP, P ,  e, ff 


8.t. p 5 nTp+ e. 


The link between this programming prohlem and clearing payment vectors for the financial 


system is provided hy the following lemma 


Lemma 6. Iff is slridlJ. increaskg, then m y  solution to P(n, p ,  e, f )  is a clear@ vector for the 


finmdal system. 


Proof. If p" solves P(n, 9, e, c), the the fact th& p" is a feasible solution to P(n, p, e, e) ensure9 that 


p' uatkfiezi the limited liability condition for a clearing payment vector. If ahsoiute priority were not 


satisfled, uay at node i, then it would be the case that p; < p and 
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consider the vector p, which is equal top' in all componentsexcept i, and, fori, is given by p;+e 


where E is ch- aufl-lciently small to emure that limited liability ranains &&Red. Because 


(nTp, + e -P& - W P "  + e - p*)j = &j 2 0, 


p, is feasibe. Becsuaeps is at Ieast equal top" in dl its componenta and greater thanp' in one of 


ita componenta, and f is 6trictly incrcmhg, it must be the case that fw) c f(p& amtmdictii 


U the supmition that p' is a solution to P(n, p, e, f )  . 


Because clawing vectcns are determined entirely by the limited liability and sbsolute priority 


conditions, it follows that these two mnditiona always produce payoff vectors that maxidm the 


total extraction of paymenta from the nodm in the financial systan. Because the cleassng vector 


is unique in any regular 6nancial systan, the d t  also implies that in regular financial aystema, 


dl decision mskers who prefer more payments to less wil l  a w  that the clearing vector masimbm 


their objectives. Thus, for example, whether one attempts to maximbe cents on the d o k  paid or 


total payments, or payme& weighkd by a b i i  weighting acheme that hvors some nodes over 


others, the end result Win be the a a m e h e  selection of the clearing vector. The above d t  shows 


also that, for a regular financial system, solving the programming problem given by P(II,p,e,f) 


for a mitably ch- function f ,  aay a linear 6mction with positive weightii constants, is a way 


of computing the clawing vetor. In fact, this is exactly the approach the monetary authorities 


in Kuwait took to dearing the financial net after the crash of the al-Manakh market. G i m  the 


n-I-step convergence of the fictitiow default algorithm di4eussed above, however, this programdng 


approach may not be an &ent way of computii clearing vectors given thai only one variable 


will be intrcduced into the basic solution on each pivot. Algorithms that exploit the economics of 


the problem, such 88 the fictitious default algorithm developed above, allow for the simultaneous 


introduction of many defaulting nodes in a single step. 


4 The Comparative statics of the ~ h ~ h g  system 


The first question we will ddrm is how this clearing payment vector chanp;es with c b m p  


in the exogenous parameters of the model. We first consider the relationship between this clearitlg 
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payment vector and the opersting income received by the system e, while holding the nomind 


Wity matrix L (or equivalently II and@ constant. Thebaeic chmkhtm . of this rel%tionship 


is provded below. In order to ensure that the d- mctor is unique and, tkm, that cornpmatiw 


statics in the traditional ssxm are possible, wt) hencefd restrid, our attention to regulah hmcid 


systems. 


proof. For the purpose, of this pmf, define the fundion R[O,p] x P'&:-f [O,@] by F(p,e) = 
@@,e;n,p). The clearing payment vector is given by the function f:WH [O,p], de5ued by 


f(e) = FIX(F(.,e)). A theoreq frm Milgrorn and Ibberta (1984) shows tW the tact that F is 


in& in e (established in Lemma 3) implies that f is inmasing. 'Ib see that f is concave and 


nonexpansive, define a aequenn, of functiorm,{f,(e))~~, inductively as fo~ows 


For each &ed e E R++' f,,(e) is just the nth iteration of the map p + @(p; II, p, e) function starting 


at the initial payment vector 0. Thus standard r a d b  on the convergence of iterates of monotone 


increasing operators show that &(e) T f(e), for d e. Using the face that F is nondecreaaing, jointly 


concave in p and e, and nonexpansive, induction s h m  that, for all n, fn is concave and nonexpmive. 


Thus, f is the pointwise limit of non-iye ooncave functions and thus concave and nonexpansiye. 


The abwe argument establishes the claim of the l ema for the function e -> FIX(@(.;II,p, e)). The 


proof of the claim for p --f FJX(@(.;II,p,e)) and 11 --t F'IX(@(.;II,p,e) is identical and thus will be 


omitted. U 


Note that in the standard siugl~period/single-firm financial model, the payment to debtholdem 


eqwh minp,e] where e is the firm's operating earnings and p is the level of the firm's nominal 
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liabilitiea. Thus, the payment received by debtboldem is a concave, incressmg, . nonexpansivefunc- 


tion of the h ' a  opemti i  income end the level of nominal liebilitk Lemma 7 shows that these 


qufditative featum of the debt paymenta m single5nn aettina$ are inherited by the debt payment 


vectors of multi-node clearing systems. This result has a number of direct implidom For ex- 


ample, mmvity of the payment stream in operating income impliea tbt increaaw in the riskinem 


of oParating income, in the eenw of semnd-order stochastic dominance under the mket-pricing 


measure, wil l  reduce the expected payments re-ceid by debtholdem end thus lower the value of 


debt claims. However, sueh risk shifts will not lead unambigwudy to increased equity valuea for the 


nodes in the system. The reason for this is simple. In our model, all debt claims are owned by some 


stockholder at some node ofthe syskan. This implies that increaxs in risk acrw the system have 


two affects. First, they raise the value of equity by lowering the value of the debt paymenb made 


by stockholders to other nodes. Second, the increased risk also lowers the d u e  of the portfolio 


of debt securitiea held aa sssets by each &&holder. Thus, the effect of global risk increases is 


ambigurn. The concaviiy of the clearing payment vector in the relative liabilitiea matrix impliw 


that payment stmcturea that are nondivemi6ed (each firm makes all payments to one other 6rm) 


producesmdleT clearing vectors thansyseamsfeaturingdivasifedclearing vectors (each 5nn has 


roueply equal obli@;atiom to all other nodes). 


Next, note that all of our results am aasC be interpmkd in ternxi of node d u e .  'Ib understand 


this,notethsttheterminal-dateequityinafinancialsystemisIITp*+e-p*, andthedebt isp'(e), 


where p* is the clearing vector fix the h c i d  systes. Thus, the total t e rm id  value of any node 


in the system is the value of debt plus the value of equity, or @p* + e. Total value of dl nodm in 


the economyis thus just 1. @Tp* +e) = 1 .@+e), the sum of the value of equity and the value 


of dl papmnta on liabilities under the equilibrium clearing vector. kom this reault we obtain the 


following Simple corollary to Lemma 8. 
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Another straie;htforwmd, but neyertheh inbmtii consequence of Lemma 6, relatea to the 


effeet of income volatility on the aggegate value of nodes in the 5nandal system. Since, in an 


arbitrage-free economy, the initial value of a node is just the dfsmwzted -on of its terminal 


value under the equilibrium pricing measure, and because the function mapping income to node 


value, e -+ @@(e) + e, is concave, the following corollary to hmma 6 is immediate. 


Thus. node d u e  is redud by unsystemstic ecommic volatility, even though, in our Bnslysis 


their are no disgipative consequences of f i n d  distress even when markets are pafect and fric- 


tionlw. Volstilty reducea the size ofpaymenta between nodes and this reduw the market value of 


nodes. Since, clearly in the frictionha market setup speciaed above, mspmmtic volatility has no 


adverse welfare consequences, this result should be interpreted 88 a caution against interpretii the 


reduction in COrpoFBte value c a d  by unsystematic risk 88 reflecting either market imperfections 


or irrational asset pricing. 


Next, wc show that, in some wm, oonvex combinations of financial syntema can n e w  have 


default or payment rates inferior to the worn of thc two or superior to the better of the two. In 


order to permit a precise formul8tion of this idea, let p*(II, f7, e )  be the clearing payment vector as- 


Soei8ted with an arbitraryfinancial system @,@,e); that k, p"(II,p,e) = FIX[Q(.;@,e)]. A X-convex 


mmbin&ion of the financial systems (II',p',e') and (II",$',e") is the financial system, (%,@,+,ex), 


d e h d  by 


(&,px,ex) = X(a',@',e') t (1 ~~ x)(I",',iji',e"),X E [O, 11, 


Lemma 8. Suppose that the linancid system (IIA,~A, ex) is & A-mnvex combination ofthe h c i a l  


systems (IF, 8, e') and (E", $', e"), then the equilibrium elwing papent vectors of the hmcial 


systems @") satis& the foUm'ng inequalities: 
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Proof. Nota that, for all i E N, thefhcth A -+ Q(p$IA,@A,e.& is linear, and therefore monotone. 


Thus we have that 


Let 


Note that E- and H+ are monotone, kmasing maps defined on [O&] with fixed pointa in this 


order interval. Ifp+ is afixed point of E+ andp- is aftxed point of H-,  then the above inequdity 


implies that 


P- I p*@b.,eA) 5 P+. 


Lemma8 is afairly weak result. However, astrcmgmcharactedaaton, such esaconcavityresult 


fa 5mcid systems, Le., a d t  ahawing that e o m  wmbinetians of systems yield higher psymatt 


rata than convex mmbiiiam of the payment vector of the two syst,ans behg mmbiied, m t  


be obtained. In fact, it is assytoconstruct -1es tothis strongerdwa&mat . ion.2 The 


failure of concavity accura because the map (&p) -+ Q(p;IX,p,e) is not concave, although it is 


mncam in each of the variables, II and p ,  mpamtdy. 
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6 possible extensionS and concluding remarks 


In thb paper, we pmvide conditions for the trxistwce and uniquenem of a clearing vector for 


a complex 5nancial system, the properties of the &acing YBCtor, and provide comparative 


stalh desnbimg the &ionship between the clearing vector and underlying parametera of the 


5nanciaI system. This work reprwab a contriiution to our undemtmding of the mcdeling of 


complex financial systems featukg cydieal obligations between the parties. Howevez, it is only 


a first step in the development ofa d pmgram in this area In fact, one of the virtues 


of our d p i a  is that it can be extended in many directions. Fktemiona fall into three broad 


categoris (i) utilizing the current model for vmrluation and risk adyais; (i) dealing with more 


complex legd/institutionaJ S ~ N C ~ U W  and (ii) incorporating dynamics. 


The simplest extension of the present an&& is to u6e the formulae developed in the paper to 


d u e  firutncial claims and 895e89 default Probabilities for financial networks. Given a atmcture of 


liabilities, the value of the debt and equitq claims for a &xed level of exogenous income at the tenoinal 


date is determined by our model. If we amume exogenous income follows a standard stochastic 


pnx?gs between the initial date and the clesring date, then this sbchastic proma, combined with the 


terminal boundary conditions i m p 4  by our model and standard risk-neutral valuation technology, 


ew ganerate prices for the debt and equity of the nodes in the p t e m  (see, for example, D d e  


(1992)). In addition, probabilities of dciault and default correlation can be easily be computed. In 


addition the distribution of cash flows to each of the nodes also can be computed and inverted to 


yield due-abrbk estimates. 


Fdnding our raiilts to allow for more complex legal and imtitutional structures is almost 


88 transparent. For example, the nodes in the systcm could be allowed to hold intercorporste 


equity claim tm well &s intercorporate debt claims. In this case inflm would be augmented by 


equity as well &s debt inflows. Because equity cl:1Rims are linear, this extension would not mmpliate 


our analyskignificantly. Multiple priority dame? could be Bccommodated by our framework. To 


accommodate multiple priority clmes, we would ntilize a sequential clearing procedure in which fimt 
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a clearing vector for senior claims is found, then the rcsidd d u e  is treated as the exogmus equity 


in the system for the -d clr?arina; of the next high& priority clabu, etc Another imprtmt 


extensfon would be to &ow for violatiom of absolute priority, a &&cant fhctur in corporate 


bmkruptciw, though not in exme of the finsneid network clearhg systems adressed earlier. The 


kag~~omthatdr ivemcstofourresu l ta re tha t tha t torc la imaeFeeont inuaus~din~~ 


in the value of the node. If viWons of absolute priority are the product of &dent multilated 


kgahing, as SIBUmed in much of the literature (ag., Brown, IW), then creditar claims are likely 


to have this property. In networks whm t h m  are substsntial fixed cast4 of h u d  dbtms, 


mntinnity is lcst and, for this reason, one would expwt to obtain more opaque results: hr example, 


the lack ofa unique clewing wctm even when mild regulerity conditions, such as thasa used in this 


paper1 imposed. 


The most difEdt direction of extension would be to allow hr more than one clearing date, and 


thus incorporate true dynamics. In principle the extension is straightforward and would proceed 88 


followa Pirst, alkrar for intercorporate equity and amme that nodes that d&ult at a (iven date 


beanne wholly owned by their creditors h m  thni date forward. Next, allow all nodes to borrow 


iimn a node ouktide the system that itself is not mbject to default risk. The outgide node, or 


‘‘central bank,” would pmvide fimda at a mmpetitive rate. Thus, nodes would only default when, 


at the clearing vector, the d u e  of future inflows is less than the d u e  of liabilities. Using this 


motif, aud backward induction, one could mursively solve for clearing vectors. Uncertainty could 


be intrcduced into this frsmework by m m i v d y  computing the enpected d u e  of future inflaws in 


order to determine the current economic value of the node and thus solve the default problem for 


mccecLsively d e r  pedods. Of course, this sort of axtansion of our aualy&i, t h u g h  the %ume of 


dynamic pmgmmmmf would greatly inatme the complexity of the Bn&ly8i4. 


~ 
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BSYM Identifiers Advance Cause of Open,  
Automated Securities Trading
Bloomberg Open Symbology Introduces New Operational Efficiencies and 
Cost Reductions for the Trading Community

Introduction
Chaos theory has nothing on the complexity generated everyday by the millions–perhaps billions–of security  
transactions that cross trading floors, clearinghouses and exchanges all over the world. Almost every aspect of  
securities management is based on closed systems that use proprietary identifiers that are privately owned and  
licensed. Closing each deal is as much an exercise in translation as it is in transaction processing, as traders,  
investors and brokers wrestle with multiple proprietary formats to determine what a security is, who owns it, how much 
it is worth, and when the deal should be closed.  It introduces a tremendous amount of friction into the trade lifecycle 
and creates opaqueness where clarity is sought. In addition, the use of proprietary identifiers adds significant cost and 
overhead when users wish to integrate data from disparate sources or migrate to a different market data system.  

Symbols are essential to the securities industry. Each one uniquely identifies a specific security instrument, just as a 
VIN number uniquely identifies every motor vehicle. Symbols are used to research and trade securities, assess risk, 
manage portfolios, and manage settlement and clearing. 

Even though there are national numbering agencies that create unique identifiers, symbol sets have evolved in  
complexity over the years to match the growing sophistication of the products they describe. Sets must be extended 
and created to catalog levels of granularity in symbology that a single ID simply can’t capture. For privately traded, 
over-the-counter products, there may be no proprietary id available.

The evolution of advanced symbologies has helped the securities industry grow, but the limitations and costs imposed 
by the closed systems have become more apparent as companies and institutions continue to integrate operations on 
a global scale. Proprietary symbology now stands as one of the most significant barriers to increased efficiency and in-
novation in an industry that sorely needs it. Moreover, the lack of common identifiers is a key roadblock to achieving the 
holy grail of straight-through processing (STP).  

Consider the following:
•	 Licensing fees require firms to pay for each symbol system they use. International firms bear an especially  

heavy burden, because they often have to license several symbologies in order to manage trading operations  
in several countries.

•	 Restrictions imposed by proprietary symbologies prevent companies from easily mapping one set of codes to  
another. This hinders integration of market data from diverse sources as well as efforts to automate trade and  
settlement activities.

•	 Market data consumers who adopt proprietary symbols for use in their own systems must not only pay licensing  
fees, but such symbols also lead to significant future costs associated with efforts to connect to emerging  
trading systems.

•	 Proprietary trading environments may have worked well for years; but they are a byproduct of a time when data  
systems operated largely as islands that did not have to interoperate with other systems.

Current trends dictate a different approach. Markets, customers and governments are demanding greater  
connectivity, transparency and efficiency. What’s more, the openness of Internet-based systems has profoundly  
altered the way businesses–and individuals–collect, manage and share information. Thus, in addition to new  
regulations that demand clarity and accountability, the move to open symbology is being driven by growing investor  
and institutional demands.

Adopting an open system of shared symbology establishes the foundation for a tremendous leap forward in the  
efficient trade and settlement of securities. Such a system will allow firms and technology service providers to shift 
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resources from laborious, inefficient processes to new investments in tools and products that will better serve clients.

An open system answers the call for greater transparency. Eliminating the need to remove proprietary IDs and re-map 
securities will greatly simplify the steps needed to migrate between market data platforms and trading systems.  
Availability of a central symbology reference will facilitate mapping between users’ internal systems and create  
opportunities for integration and automation of the global enterprise.

Introducing Bloomberg Open Symbology (BSYM)
In response to the market demand for open systems and symbology, Bloomberg has released Bloomberg Open  
Symbology (“BSYM”) identifiers and has dedicated these identifiers to the public as set forth at the BSYM web  
site (bsym.bloomberg.com). BSYM is now available as a non-proprietary, open, security identification system that  
anyone can adopt.  BSYM offers any company involved in securities trading a number of advantages over closed  
and costly systems.

•	 BSYM is a universal securities symbology that offers companies the potential to streamline internal management 
functions and reduce costs associated with maintaining multiple symbology systems.

•	 BSYM can be used independently of any Bloomberg product or system and there is no limit on the term of the 
license, so users will never be required to pay for or remove BSYM identifiers from their systems.

•	 BSYM can be applied in many unique ways. For example, a middleware tool built on BSYM would create a bridge 
between companies using proprietary systems, allowing them to speak in a common language without the need to 
license additional symbologies. This creates significant cost savings through reduced licensing fees and automated 
processing for all participating firms.

•	 BSYM can be used for any purpose and incorporated into any system now and in the future. Systems built on BSYM 
symbology will never be required to pay licensing fees for its use.

•	 BSYM will greatly reduce the cost associated with changing platforms, allowing companies the freedom to select 
systems that best suit their needs.

The call from the market for systems that encourage innovation and efficiency couldn’t be clearer. Bloomberg is com-
mitted to delivering the tools and standards that will help the securities industry enjoy a new era of advancement.

Using BSYM Identifiers
BSYM is not a single identifier.  It is the name for Bloomberg’s family of security identifiers.  The BSYM identifiers allow 
trading and market data systems to cross reference security identifiers from various sources and various Bloomberg 
data products. Toward that end, Bloomberg is allowing BSYM Identifiers to be freely reproduced, distributed,  
transmitted, used, modified, built upon, or otherwise exploited by anyone for any purpose at no cost.  Indeed, 
Bloomberg is encouraging all members of the trading community to use BSYM identifiers for integration and  
redistribution within and beyond their organizations.

BSYM identifiers available at bsym.bloomberg.com can be used to map data across all of Bloomberg’s raw data  
products, and they can also be used to determine the ‘parse key’ for loading a security on the Bloomberg Terminal 
command line. BSYMs can be searched by many proprietary IDs, such as the Stock Exchange Daily Official List 
(SEDOL), Committee on Uniform Securities Identification Procedures (CUSIP), and the International Securities  
Identification Number (ISIN), as well as by security description, security type, and pricing source.  
Bsym.bloomberg.com also provides predefined dump files and searches, as well as custom search and filter  
capability. All data is refreshed on a daily basis.  

Expanded security coverage, additional Bloomberg Identifiers, and additional mechanisms for searching and requesting 
data will be added as needs are defined.

For the purpose of BSYM, a security is defined as an issue that may be priced by multiple pricing sources–such as 
IBM’s common stock, and the 10 Year US Treasury Bond. An Instrument is defined as a security that is pricing or 
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trading in a specific venue – such as NYSE, AMEX, US Composite, a specific broker-dealer, or Bloomberg Generic 
Pricing.  Instruments are identified at the level of their market price (Ticker + Pricing Source, BSID). Securities are 
identified at the level of the issue itself (Unique Identifier, Name).  

Understanding BSYM Fields
Name	 Name of the company or brief description of the security. The Name of an instrument may change  

in conjunction with corporate actions.

Unique ID	 Unique identifier assigned by Bloomberg to all securities. This id can be used for mapping B-Pipe 
and API identifiers to Bloomberg’s Data License products. Data License provides extensive funda-
mental and security master data that complements Bloomberg’s real time data offerings. The Unique 
ID can also be used to load a security onto the Bloomberg Terminal by prefixing the value with ‘ID’  
on the command line. In general, for equities, the Unique “ID” groups together instruments that 
contribute pricing to the same composite market (e.g. US, JP).  However, an exception to this rule 
occurs when the same security trades in different currencies in the same market, rendering the  
trading instruments nonfungible. In these cases, securities will have a different Bloomberg Ticker 
and Unique ID for each currency in which the security trades.  MiFID OTC markets are a good  
example of this (see examples below). For fixed income securities, the Unique ID identifies a  
security across all dealers and currencies, so the Unique ID is not an indicator of fungibility or  
participation in a composite for fixed income. The Unique ID of a security may change in  
conjunction with corporate actions.

Security Type	 Description of the specific security type within its Bloomberg market sector (Yellow Key). This  
classification corresponds to the predefined list of files that are available on the BSYM website. 
Mappings from Market Sector to Security Type are available on the Web site under the ‘Security  
Type Mapping’ link.

Market Sector	 Market sector that Bloomberg has assigned to the security. This corresponds to the Bloomberg  
Yellow Key.

Pricing Source	 Acronym or short code for the market data source, used on the B-Pipe feed. This field provides  
B-Pipe source codes for a variety of asset types. Note that in some cases the source in this field 
is not loadable on the terminal.  B-Pipe makes a distinction between sessions in the source field, 
while the terminal handles this by means of the PCS <GO> function, which allows configuration 
of user-specific session preferences. In general, for markets that have electronic, pit and combined 
sessions, the pit session will use the source code found on the terminal: the electronic session will 
use that code prefixed by “e”, and the combined session will use the source code prefixed by “c”. 
In addition, B-Pipe assigns a source code for indices that are not used on the terminal, e.g. DJI for 
Dow Jones pricing the INDU index. Pricing Source is currently available only for B-Pipe priced  
securities. See the “Pricing Source Descriptions” link on the BSYM Web site for a mapping of the 
Pricing Source code to a description of the source.

BSID	 (Bloomberg Security ID Number with Source) - Unique integer identifier for all B-Pipe securities. 
This identifier is used for subscription services in B-Pipe (Managed and On Demand). BSIDs are 
unique at instrument level and have a 1-many mapping with the Unique ID field described above. 
The BSID of a security may change in conjunction with corporate actions and is available only for 
B-Pipe priced securities.

Ticker	 Unique B-Pipe ticker symbol. Combined with the Pricing Source and Market Sector, this forms a 
loadable security string on the Bloomberg terminal for most securities. The ticker may change in 
conjunction with corporate actions and is available only for securities that are priced on B-Pipe.
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BSYM Ticker Creation
The rules for forming the BSYM Ticker vary according to security class.

Currency	 For basic cross rates B-Pipe uses the ISO codes for both currencies.

	 Due to the wide variety in type and the desire to keep them short currency derivative symbols are  
not so clear-cut. They tend to be based on the ISO codes, but they are often truncated. They can 
also be based on the futures exchange codes such as ED, BP, SF, etc. The type of derivative is often 
included as an abbreviation, and although the use of the abbreviation is consistent for the derivative  
it is difficult to predict. Time periods are almost always included when relevant.

	 Spot (implied cross rate against the US dollar) currencies are not available. Instead you have to ask  
for explicit cross rate, e.g., instead of using “EUR” or “JPY” use “EURUSD” or “JPYUSD”.

Equity	 Equity symbols are usually the exchange ticker.

Fixed Income	 Fixed income symbols are built by combing a root symbol, the coupon, the maturity date and  
an optional series. 

	 A zero coupon is represented by “0”, e.g., “PEISTP 0 01/29/23”

	 A floating coupon is represented by “F”, e.g., “CNC F 12/04/13”

	 A variable coupon is represented by preceding the coupon with “V”, e.g., 

	 “MQB V5.75 02/18/13 1” 

	 Loans are represented by “L” I in the coupon position, e.g., “C L 05/01/98”

	 A perpetual instrument is represented by preceding a pseudo maturity date with “P”, e.g.,  
“BMO 5.474 P12/29/49 D”. 

	 The month, day and year of maturity dates are always two digits, 0 padded if needed.  
Pseudo maturity dates are often “12/29/49”.

Fund	 For exchange traded funds the symbol is usually the exchange ticker.
	 Other fund symbols are mnemonics or acronyms built from the description of the index.

Future	 Future symbols are based on the exchange ticker.

	 Physical, financial and currency futures symbols use a one, two or three character root for the  
commodity followed by the standard month letter and single last digit of the year. If the commodity 
code is a single character, such as “W”, it is padded with a space so that it is always two characters

Index	 Major exchange indices usually use the common symbol, but the source is not always obvious, e.g., 
B-Pipe subscriptions “/DJI/INDU Index”, “/OPRA/SPX Index”, “/JT/TPX100 Index”.

	 Other index symbols are mnemonics or acronyms built from the description of the index. 

Option	 For future options use the ticker of the underlying future with a “P” or “C” appended, a space and 
then the strike price, e.g., “CDM8C 99.5”

	 For equity options use the ticker of the underlying equity, a space followed by the month or month/
day of expiration, a space and then a “C” or “P” with the strike price appended.  E.g. “IBM 10 C140”.

	 All strike prices drop trailing 0s and decimal points, e.g. ,“15.15” is “15.15” but “15.10” is “15.1” and 
“123.00” is “123”.

Warrant	 For listed warrants with an official exchange symbol, the exchange symbol is used.  

	 For warrants that are not listed, or that do not have an official symbol, the value is algorithmically  
generated by Bloomberg using rules that vary by issuer.
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Cross Referencing Field Names across Products
BSYM identifiers can be used to map real time data from B-Pipe or Bloomberg’s Server API to Bloomberg’s Data 
License reference data and corporate actions products.

Field ID (FLDS)	F ield Mnemonic (DL / API)	 B-Pipe Field	 BSYM Field
DS002	 NAME	 Reference.Security.ID.Name	 Name
ID059	 ID_BB_UNIQUE	 Reference.Security.Bloomberg.UniqueID	 Unique ID
DS213	 SECURITY_TYP	 Reference.Security.Type	 Security Type
DS122	 MARKET_SECTOR_DES	 NA*	 Market Sector
DY003	 ID_BB_SEC_NUM_DES	 Reference.Security.ID.Bloomberg.Symbol	 Ticker
DX282	 FEED_SOURCE	 MD.Source	 Pricing Source
ID122	 ID_BB_SEC_NUM_SRC	 MD.Security.ID.BSID	 BSID
*Reflected in the message type of the B-Pipe reference data message

Examples of BSYM Identifiers across  
Markets and Security Classes

Equity (Single Currency per Listed Market):	

Column Heading	 IBM (US Composite)	 IBM (NYSE)	 IBM (German Composite)	 IBM (Berlin Exchange)

Name	 INTL BUSINESS MACHINES CORP	 INTL BUSINESS MACHINES CORP	 INTL BUSINESS MACHINES CORP	 INTL BUSINESS MACHINES CORP

Unique ID	 EQ0010080100001000	 EQ0010080100001000	 EQ0010080100001007	 EQ0010080100001007

Security Type	 Common Stock	 Common Stock	 Common Stock	 Common Stock
Market Sector	 Equity	 Equity	 Equity	 Equity
Ticker	 IBM	 IBM	 IBM	 IBM
Pricing Source	 US	 UN	 GR	 GB
BSID	 399432473346	 627065740034	 395137622225	 1623498268881

Equity (MiFID On Book):

Column Heading	 LLOY (London Listed - GBp)	 LLOY (PLUS - GBp)	 LLOY (Chi-X - GBp)
Name	 LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC
Unique ID	 EQ0011242800001000	 EQ0000000005037071	 EQ0000000002865282
Security Type	 Common Stock	 Common Stock	 Common Stock
Market Sector	 Equity	 Equity	 Equity
Ticker	 LLOY	 LLOY	 LLOY
Pricing Source	 LN	 PZ	 IX
BSID	 678605350662	 1997163581670	 2005750482138
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Equity (MiFID OTC):			 

Column Heading	 LLOY (London OTC - GBP)	 LLOY (Chi-X OTC - GBP)	 LLOY (London OTC - Euro)	 LLOY (Chi-X OTC - Euro)

Name	 LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC	LLOYDS BANKING GROUP PLC	 LLOYDS BANKING GROUP PLC

Unique ID	 EQ0000000005002180	 EQ0000000005002180	EQ0000000005103164	 EQ0000000005103164
Security Type	 Common Stock	 Common Stock	 Common Stock		 Common Stock
Market Sector	 Equity		  Equity	 Equity			   Equity
Ticker	 LLOYGBP		  LLOYGBP	 LLOYEUR		  LLOYEUR
Pricing Source	 XJ		  XC	 XJ			   XC
BSID	 6111741723983	 6064497083727	 6111741807243	 6064497166987

Commodity/Index Future (With Sessions):		

Column Heading	 LCJ0 PIT (CME)	 LCJ0 ELEC (CME)	 LCJ0 COMB (CME)
Name	 LIVE CATTLE FUTR  Apr10	 LIVE CATTLE FUTR  Apr10	 LIVE CATTLE FUTR  Apr10

Unique ID	 IX8013948-0	 IX8013948-0	 IX8013948-0
Security Type	 Physical commodity future.	 Physical commodity future.	 Physical commodity future.
Market Sector	 Comdty	 Comdty	 Comdty
Ticker	 LCJ0	 LCJ0	 LCJ0
Pricing Source	 CME	 eCME	 cCME
BSID	 614188830019	 2078772677955	 9981512502595

Single Stock Future:		

Column Heading	 Daimler May 2010 (LIFFE)	 Daimler May 2010 (Eurex)	 Daimler May 2010 (Milan)
Name	 DaimlerChrysler AG May10	 DaimlerChrysler AG May10	 DaimlerChrysler AG May10

Unique ID	 EF12666074700074186777	 EF12399952420074448897	 EF12666075260074186844
Security Type	 SINGLE STOCK FUTURE	 SINGLE STOCK FUTURE	 SINGLE STOCK FUTURE
Market Sector	 Equity	 Equity	 Equity
Ticker	 DCX=K0	 DCX=K0	 BDCX=K0
Pricing Source	 LIF	 EUX	 SM
BSID	 609900809283	 279182846813	 476756828955

Corporate Bond: 		

Column Heading	 GS 7.5 02/15/19 (TRACE)	 GS 7.5 02/15/19 (German Composite)	 GS 7.5 02/15/19 (CBBT)

Name	 GOLDMAN SACHS GROUP INC	 GOLDMAN SACHS GROUP INC	 GOLDMAN SACHS GROUP INC

Unique ID	 COEH7068206	 COEH7068206	 COEH7068206
Security Type	 GLOBAL	 GLOBAL	 GLOBAL
Market Sector	 Corp	 Corp	 Corp
Ticker	 GS 7.5 02/15/19	 GS 7.5 02/15/19	 GS 7.5 02/15/19
Pricing Source	 TRAC	 GR	 CBBT
BSID	 631369281816	 395146080536	 665729020184
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Mortgage:		
Column Heading	 FNCL 4 4/10 (Bloomberg Generic)	 FNCL 4 4/10 (Composite Bloomberg Bond Trader)
Name	 FNCL 4 4/10	 FNCL 4 4/10
Unique ID	 MG%3278ACK	 MG%3278ACK
Security Type	 MBS 30yr	 MBS 30yr
Market Sector	 Mtge	 Mtge
Ticker	 FNCL 4 4/10	 FNCL 4 4/10
Pricing Source	 BGN	 CBBT
BSID	 12894812880	 665729841872

Preferred:
Column Heading	 RBS CAPITAL FND TRST VII (US Composite)	 RBS CAPITAL FND TRST VII (NYSE Preferred)	 RBS CAPITAL FND TRST VI (US Composite)	RBS CAPITAL FND 

TRST VI (NYSE Preferred)

Name	 RBS CAPITAL FND TRST VII	 RBS CAPITAL FND TRST VII	 RBS CAPITAL FND TRST VI	 RBS CAPITAL FND 

TRST VI

Unique ID	 PFEP0109264	 PFEP0109264	 PFEP0093955	 PFEP0093955

Security Type	 PUBLIC	 PUBLIC	 PUBLIC	 PUBLIC

Market Sector	 Pfd	 Pfd	 Pfd	 Pfd

Ticker	 ABNA 6.08 P12/31/49 G	 ABNA 6.08 P12/31/49 G	 ABNA 6.25 P12/31/49 F	 ABNA 6.25 

P12/31/49 F

Pricing Source	 US	 SNY1	 US	 SNY1

BSID	 399432238302	 618475570398	 399432238212	 618475570308

Government Bonds:
Column Heading	 T 7.5 11/15/24 (Standard Chartered)	 T 7.5 11/15/24 (Citigroup)	 T 7.5 11/15/24 (Credit Suisse)

Name	 US TREASURY N/B	 US TREASURY N/B	 US TREASURY N/B
Unique ID	 *	 *	 *
Security Type	 US GOVERNMENT	 US GOVERNMENT	 US GOVERNMENT
Market Sector	 Govt	 Govt	 Govt
Ticker	 T 7.5 11/15/24	 T 7.5 11/15/24	 T 7.5 11/15/24
Pricing Source	 SCBX	 CGUK	 CSFB
BSID	 12004433733107	 5063766582771	 5059471615475
* In some cases Unique ID is blank due to the value being based on a proprietary ID.  New IDs are being assigned and will be updated soon.

Currency:
Column Heading	 USD-EUR X-RATE (Tokyo Composite)	 USD-EUR X-RATE (New York Composite)	 USD-EUR X-RATE (CBA Bank)	 USD-EUR X-RATE (8am Fixing Rate)

Name	 USD-EUR X-RATE	 USD-EUR X-RATE	 USD-EUR X-RATE	 USD-EUR X-RATE
Unique ID	 IX430979-0	 IX430979-0	 IX430979-0	 IX430979-0
Security Type	 CROSS	 CROSS	 CROSS	 CROSS
Market Sector	 Curncy	 Curncy	 Curncy	 Curncy
Ticker	 USDEUR	 USDEUR	 USDEUR	 USDEUR
Pricing Source	 CMPT	 CMPN	 CBAX	 F080
BSID	 425201809525	 416611874933	 12648678733941	 14289356241013
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Index Option:

Column Heading	 June 10 Puts on SPX (US Composite)	 June 10 Calls on SPX (US Composite)
Name	 June 10 Puts on SPX	 June 10 Calls on SPX
Unique ID	 IX6956513-0-1400	 IX6956509-0-9400
Security Type	 Index Option	 Index Option
Market Sector	 Index	 Index
Ticker	 SPX 06/19/10 P800	 SPX 06/19/10 C800
Pricing Source	 US	 US
BSID	 399438708018	 399438708043

Equity Option:			 

Column Heading	 April 10 Calls on VOD US (US Composite)	 April 10 Calls on VOD US (AMEX)	 April 10 Calls on VOD LN (LIFFE)	 April 10 Calls on VOD NQ (EUREX)

Name	 April 10 Calls on VOD US	 April 10 Calls on VOD US	 April 10 Calls on VOD LN	 April 10 Calls on VOD NQ

Unique ID	 EO1016052010040181900001	 EO1016052010040181900001	 EO101605201004038DC00006	 EO101605201004028F000002

Security Type	 Equity Option	 Equity Option	 Equity Option	 Equity Option
Market Sector	 Equity	 Equity	 Equity	 Equity
Ticker	 VOD 04/17/10 C12.5	 VOD 04/17/10 C12.5	 VOD 04/16/10 C110	 VOD 04/16/10 C120
Pricing Source	 US	 UA	 LIF	 EUX
BSID	 399444460111	 523998511695	 609900043157	 279187460380
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CAPITAL STRUCTURE ON BLOOMBERG 
 
 
Use CAST <GO> to display a selected company's liabilities and the amount owed to investors at each level 
of the company's capital structure.  

This provides transparency into how creditors may be paid in the event of the company's bankruptcy. 
Typically, secured lenders are paid first, followed by senior unsecured lenders, subordinated lenders, junior 
subordinated lenders, and finally, shareholders. CAST also displays information on the corporate structure 
of the company, such as the subsidiaries.  
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Choose an applicable security and enter CAST <GO>.   

To filter the debt by currency, choose the appropriate option from the amber dropdown to the right 
of CURRENCY.  To display the graph with a Log Scale or Linear Scale, choose the appropriate 
option from the amber dropdown to the right of GRAPH.  

To view the underlying individual securities or as-reported financial data, click on the data label or 
the accompanying shaded bar. 

Additional elements of the company's corporate structure are displayed in the lower half of the 
screen. Clicking on [-] or [+] to the left of the appropriate category will collapse or expand each 
category.  

1 

HOW TO ANALYZE CAPITAL STRUCTURE 

1
2

3

4

2 



Yellow: Debt disclosed in company 
filings, but not included in Bloomberg's 
security database. The data displayed 
has been confirmed by the company. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Orange: Insurance and 
investment contract liabilities that 
are disclosed in filings. 

Aqua: Preferred shares. 

Purple: Data that comes from 
financial filings, such as operating 
and/or capital leases, deposits, 
pension obligations, and accounts 
payable. 

Pink: Municipal debt. 

Blue: Represents the market 
capitalization as of the previous 
day's close. 

Violet: Represents asset-backed 
and mortgage-backed debt that is 
part of Bloomberg's security 
database. 

How to Interpret Bar Chart Colors 

Display Security Detail Information  

Green: Debt included in the 
BLOOMBERG PROFESSIONAL® 
service's security database. 

FA<GO> from CAST will display the company’s 
financial history, indentify trends and gain data 
transparency to assist in analyzing the value of a 
potential investment, partnership, or acquisition. 

Clicking on a data 
label or shaded bar on 
the Capital Structure 
screen will open either 
a Security Detail 
Screen or FA<GO>.   
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Systemic risk in ffnancial networks 

by Lany Eiwmberg' and Thomas H. Noea 

S1-f. We consider default by firms that are past of a single clewing mechawm ' . Theobligt+ 
tions of all h within the syetem s.re determined Sirmtltmeoualy in a fashion cox&tmt with the 
priority of debt claims and the Iimfted lrability of equity. We first show, vis a fixed-p&it argument, 
that there alwayrr exists a "clearing payment vector'' that clears the obligations of the members 
of the clearing system; under mild regularitv conditions, thja clearing vector is unique. Next, we 
develop an algorithm that both dears the financial network in a computationally efficient fashion 
and providea information on the systemic risk faced by system Arm. Finally, we produce qualitative 
comparative &ti= for financial networks. T h e  comparative statics imply that, in contrast to 
singl4irm resnlki, unsystematic, nondiiipative shocks to the system will lower the total valuc of 
the network and may loww the value of the equity of some of the individual network firms. 

We would like to thank the partiepants in the 1999 Discrete Mathematics and Computer Science 
Confcrenm on New Market Models for many helpful commcnki on an earlier draft of this paper. 
Comments by Isaac Sonin and Tom= Slivnik, were particTilary appreciated. The usual disclamer 
appliea, 



Systemic risk in financial networks 

1 mrodnction 

One of the most pearssive espects ofthe contemporary financialenrrironment is the rich network 

of inbrnnnectioM among firma. Although fhulcial liabntiea owed by OILe !inn to moth are 

usually modeled aa unidjrectid obligations dEependent only oq the Bzzmcid health ofthe k d n g  

firm, in reality, the liability structum of aqornte obEgatbm is invsrisbly much more intricate. 

The due of most firma is dependent on the pay05 they recei.Eefmm their claims on &ha firma. 

Tbe d u e  of theseclaimsdepends, in turn, on the h d d  Wthofyet other firmsin thesystem. 

Moreover, hkagsbetwem firms canbe cyclid A default by fhpl A onits obligations to firm B 

may lead B to defsut on ita obligationst0 C. A default by C may, in turn, have sfeedbsck effect 

on A. Thus, financial syshm architechnes may exhibit cyclical depadence in inte&rm obligations. 

We consider the problem of finding B clearing mechanism in c89e8 in which this sort of cyclical 

imxdepndence is pmmt. 

All markets have m e  kind of cleaain@; mechanism. Perhapa daring mechanisms for inter- 

bank payments a d  for listed exchmgw h s v e d v e d  t h e m  &Won. In the United Statea, for 

example, CHIPS and Fedwire are the main banking clearing mechantsms; in Germany, the Abrech- 

mmg and the EAF (Etektronbhe ATJ rechnung mit Fiktrader) perf- thia functiin. Rq&ing 

clearing mechsnipm, one of the attrwtiicms of trading on ahted options exchange, the CBOEfor 

example, is th& the Options Clearina, Corporaticm is the counterparty to every trade. Hence credit 

considerations do not prohibii lower credit traders from participating in these markets. Them pay- 

ment systems are forced to cvnfiont large defaults on a regular basis. Fixamplea of such defaulta 

include the failure of I.D. Hemtatt in 1974 end the Bank of New York overnight shortfall of $12.6 

billion dollars in 1985. Sydam-wide meltdowns also occur. For example, consider the collapse of the 

Tokyo realastate market, the bsnkn;lptcyand public bailout of American 5&T9 tothe mst of about 

$KObill iondouarSandtheVeneeuelen~~ofl994. OneofthemostintereStingfiriluresof 

a tightly intercomectd clearing system was the 1982 dlepse &-Mad& Stock Market in K d t .  
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The claaring system, consisting of app lmimatdy 29,ooo pcst-dseed checks writteu by trrtders, col- 

lapsed aftar a 40 percent drop in market palurs. The uominal gmss Wilitiea ofthe participants 

in the market to each other at the time of the collapse waa more than four tima Kuwait's GDP 

(W, Girgis, and Kotob, 1997). 

Surprbbgly, deapite the obvioua importance of the "architecture of &umcial W g d  for deter- 

mining the retm-generating process for finandal ma&, little has been written on cyclical financial 

mterconnections. Bilateral clearing haa been thmughly analyeea in M e  and Huang (1996). Rm 

&et and Tirole (lm) d y z e d  the incentive and monitoring impact of an interbank loan. Emm 

a more empirical paqmtive, Ana;elini and Russo (1M) develop aa empirical model of intermr- 

m t e  defadts. In this mcdel, the probability that a default by one firm triggera another firm's 

default is exogcmoualy apeciiied without modeling i n t a r w m  cash flaws. Eli-, Gi, and Kw 

tob (lW) report the actual procedure usad to clear intercorpora te debts after the Kuwaiti stock 

market d. However, to our knowledge, this paper is the first to analyze, in a general W o n ,  

the properties of intercorporate cash flows in financial systems featuring cyclical obli@ions and 

endogenomlydetermined clearing vectors. 

I%is lack of attention to cyclicality is even more surprising given the extensive literature mod- 

cling default in a simple imidirectional and bilateral context. In fact, thc whole literature on term- 

structure of inkrest rates ignores the considerations mentioned above. While mode%ng thc valnation 

of a firm's debt BS independent $om that of other firms simpIifiw debt and cquity models, thirr &Y- 

mpt ion  becomes que6tionable in portfolio management, corporate bond trading and the analysis 

of counterparty credit risk. The aim of this paper ia to investigate the propagation of risk through 

clearing SJrStems and the effects of this risk propagation on the return-generating p m  of system- 

participant& A desideratum for the fiitilre development of these linea of march is thc development 

of a simple, tractable model for compnting cl-g vectors for intraiinkal finencial systems. Thc 

aim of this paper is to provide such a model. 
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We develop a fairly general model of a clearing system. The model satisfies the stand& 

conditiomi on clearing vectoss imposed by bankruptcy law: proportional repsyments of liabiitiea 

in default, limitd liability, and absolute priority. We shall show, via a flxd-point argument, that 

there always exists a "clearing payment vector," consistent with these conditions, that m e a  

the payment made by each node in the system. Moreover, under mild mguhity ariditins, this 

clearing vectar ia unique and may be chma&md . in two wrays. First, it is the limit of a Bnite 

sequence of clearing vectors produced by "8ctitious sequential default" algorithm. This algorithm, 

as well as quickly yielding the clearing vector, producea &natural metric for examhbg the systemic 

risk exposure of firms in the 6riancial system. Second, the cleering vector msaimizes the weighted 

average of ffrm paymenta regadka of weighting -e. Our results demonstrate that any clearing 

payment vector maximks both the cen&a-the-dollar repaid and the total repayment8 to creditors. 

Afta analyzing the clearing vector, we perform comparative statics on the clearing payment 

vector, dekminhg the nature of its dependence on the vector of exogenous cash infusions as well 

as on the architecture of fhmcial liabiitiea linking the vrvious members of the system. More 

speci5cally, we show that the ckxwing payment vector is a multidimensional concave function of 

operating cash flm and the level of nomid  payments, and thitt the d u e  of equity is not generally 

convex in cash flow. These results imply that the total d u e  of fhma in the qstern is concaw in 

exogenous cash flows. In tm, this increased comvity impliea thst i n d  volatiiw, by lawering 

expected inter5m payments, will lower the total value of nodes in the system, even though there am 

no cats to insolvency in our modeL (And thus the real economic effect of such a shock is nil.) Our 

results suggest that using changes in total as& values to measure the effect of an economic shock 

on a group of tightly intercoMected compenies ( e.g., Japanese banks) cm be highly misleading. 

The paper is organized as follows. In Section 2, we present the model and develop the basic 

machinery, including existence uniqueness results. In W o n  3, we present the two C h a ~ ~ k h t i ~ ~  

of the clearing vectors and examine their comquences. In Section 4, we deriw comparative statics 

of the clearing system. Section 5 concludes the paper and considers some exteusiom 
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a lhmework and basic results 

2.1 x+&nim t-ie8 

Let 818 represent lulimensianal Euclidean vector space. Let N = {1,2, ... a}. For any two 

vectonr x, II E 818, define the lattice opaaticms 

x v II := (=[zI,IIII~=[Q, yzl . . . m 4 % , ~ &  

Let 1 rep-t an n-dimensional vector, all of whae components equal 1, i.e., 1 = (1 ,..., 1). 
S i l y ,  let 0 represent an rtidimensional vector, all of whoss components qual 0. Let I[. Ill den& 

the t'-normon W. Thai is, for each x E W let 

R 

ll4h := Clzal. 
i=l 

For each n x n matrix, M, let AM) represent the spectral radius of the &k, the eigemalue of the 

W r i x  of maximal absolute value. With tach linear tramform de6ned on P there is an anwciated 

nxnmatr i xM.  L e t [ [ ~ ~ ~ ~ ~ ~ b e t h e o p e r a t o r m a t ~ N o n n a s s o C i a t e d w i t h ~ ~ ~ ~ [ ~ .  'I'hatiri,foreech 

n x n matrix, define 

It is well known that [e.& Horn and Johnson (1985) 55.6.4, page 2941 that, for any n x n matrix M, 

we have 

An important deEnition for our future ~nalysk is of a non-expansive map. A map T: P + En is 

(t')-nonexpan.sive if. Vz E 8". 

llT(z) - T(dI!I 5 '1% - 8111. 

Whenever an ordering of elements of ?Rn is specified in the sequel, the ordering refers to the p o i n t w k  

ordering i n d u d  hy the lattice operations, Le., 
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2.8 Emoms3 fhnuwmk 

Conaider an economy populated by ~t n o d s  Esch ofthwe nodes is to be thought of a distinct 

econOmc entity, or "financial node" participating in the clearing network. Each such entity may have 

nominal liabilities to other entities in the system. These nominal liabilities repment the promised 

payments due to other nodes in the network. We repiwent this S ~ N ~ ~ U C E  of liabilities with the n x n 

nominal liabilitiea & L, where &j reprwenta the nominal liability of node d to node j .  As the 

notion of nominal claims seems to imply, we amme that all nOminat claims are nonnegatke and 

that no node has a nominal claim a@mt itself: In order to reflect this economic inhpmtation, we 

spec% that the nominal liabilities matrix is non-negative and that all of the diagonal elementti of 

thematrixequd 0; that is, we - t h a t V i , j  EN,L*j 2 0 and t ha tVi ,& = 0. Let ec 2 0 

be the exogenom opemting inmine received by node i from 80- ''outaidc? the clearing system. 

Operatin@; i n m e  can be viewed as the cash flowa thrown &by the real assets controlled by the 

node. A financid system is thus a pair (L, e), consisting of a nominal obligaiiona matrix, L and an 

operding income vector e, satiafying the mnditions given above. 

Let pr represent the total dollar payment by node B to the other nodes in the system. Let 

p = (Pt,pz,. _. ,pn) repretent the vector of total paymenfa made by the noden Let fjj r e p m t  total 

nominal obliffstion of i to all other node, that is, 

Let ps @,%, . . . ,&) r e p m t  the 8sBoci&ted vedor, which we will term the total obligation 

vector. This vector rep- the payment level required for complete d i i o n  of all contrsdual 

liabilitiea by dl nodes. Let 

otherwise 

and let 11 mpresent the corresponding ma% which we will term the mWve LiabiIitiea ma$&. This 

~ r i x  captures the nominal liability of one node to another in the system aa a proportion of the 

debtor node's total liabilities. We wmme that all debt chima have equal priority. This equality of 

priority implies that the papent made by node Z to node j is given by &&j. This implie that the 
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the totd payments received by i are equal to ~ ~ ~ l ~ j p j .  Further, d payments ere made to some 

node in the system and therefure, 
n 

3-1 
vi, cnij = 1, 

or, in matrix notstion, 

II1= 1, 

equality we will use later in the analyak. 

The total cash Bow to the owners of the equity of node i equals the sum of the papex& received 

by other nod= plus the oper&ing income leas the payments me& to i's creditors. This impliea that 

the value of node i equity wals 

Note also that, by using (1) and (2), the financial system (&,e), where L is a nominal payments 

matrix and e is a vector of operaKmg incomes, can be quidently dewxibed by the corresponding 

triple @,@,e), where II is a relative Eabjlitii matrix, @ is a total Eabiity vector and, e is an 

operating income vector. We will this defmiption of a fhmcial system in the auheqiient analysis. 

Intuitively, a ciearing payment vector for the financial system should represent a specification 

of the payments made by each of the nodes in the financial system that is consistent with the legal 

rules allocating cash Rows among nodes and among holders of debt and equity. ??me criteria which 

must be satlsfed are (a) limited IiabiIiLy, which require8 that the total payments made by a node 

mimt never exceed the cash flow adlahle to the node, (b) the priority of debt claims, which requires 

that 8torkholders in the node receive no value until the node is able to compietely pay off all of its 

oiit.qhnding liabiities, and (c) proportionality, which requires that if default by occurs, all claimant 

nodes arc paid hy the defaiilting node in proportion to the size of their nominal claim on firm assets. 

Them desiderata m o t i n k  the following definition. 

Definition 1. 

that sat,ib&ies the following conditions: 

A dearhg payment vector for the financial system (II,p,e) is a vector p* E [O,p] 



Junc 19, lseS 

Figure 1. A F i c i a I  sysfm 

The above diagram depicts aflnancialsystem The system m n s h  of 4 nodes Iabeld 1,&3,and 4. 
Beside each node is a record of the opemti i  income it r d v e a  (e) and the total payments, p, it 
is con!xa&d to make with the other nodes in the system The mows between nodes indicate that 
the source node bas an obligation to the target node. When such an obligation 8dsts between two 
nodes, say i and j ,  the label I&$, denoting the proportion of 3's total liabilities that are attributable 
to debts to j ,  is placed beside the anow. 

a Limited Liability. Vi E N ,  

b. Absojute Prior& Vi E N ,  either obIijqi$ions are paid in full, that is, p: = &, or all cash flows 

are paid to creditors, that is, 

in Figure is pm A deming payment vecbr for the financial system illustrate d by the 

vector p" = (0.20,0.95,0.u), 0.60). This vector calls for Node 1 to pay 0.20 to the other nodes. 

Bscaw II,, = 1.0, this payment is received entirely by node 2. Node 1 &vea no inflows from 

other nodes in the clearing system; thus, Node 1's total inflows are given simply by ita ope&& 

i n m e  of 0.u). Node 1's payment of 0.20 is less than its total ob&@iom of 1.00. Consistent with 

absolute prioety, the clearing trector thus requim Node 1 ta pay out all of ita cesh flows. Node 2's 

payment under the clearing payment vector is 0.96, which is less than 2's obligated payment of 1.20. 
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BetaweII~ = 1, this papent is received artiFaly by Node 3. Node 2 reeeivesinflcRw both fcomNade 

1 and from Node 4. The clearing vector CaIlS for Node 4 to pay Node 2 pZ& = (O.eO)(O.%) = 0.46; 

as explained above, Node 1 pays Node 2 0.20. Thus, for Node 2, the total Mows from other nodm 

plw oparating income equd 0.4 + 0.20 + 0.30 = 0.96. Again, amsistant with labsolute priority, all 

of Node 2's inilo4ls an! paid out to c d i t m i .  Node 3's paymeat under the clearing psyment vector 

is 0.20, which is equal to Node 3's obligated papnent. E3ecantsa Ig, = 1, this paymmt is received 

ttntirely. by Node 4. Node 3 reoeiws Mows both from Node 2 and Node 4. The Mow &om Node 

2 equals 0.95, the payment made by Node 2 undw the equilibrium d m  paymeat vector. The 

Mow h m  4 equ$s 0.16, 0.26 of 4'8 de&@ payment of 0.60. Thus, the d u e  of Node 3's equity 

is 0.10 + 0.96 + 0.16 - 020 = 1.00. Node 2 reaivea a payment of 0.60 from Node 4 , b  than Node 

4's obIi@ payment of 0.80,0.16 of this payment goes to Node 3 md the remainder of 0.46 g m  

to Node 2. This payment exwtly equcrls 4's cash Mow, whichmnsistS ofopeoeting i n m  ofO.40 

and a payment of 020 from Node 3. Note that the 5nancid sanff,em being modeled is co-ve 

in that wealth is neither created nor destroyed by the cleaing proms. Rather, the clearing process 

8pm to diskihiite the 1.00 m operating income, reoeived by the financiaI sy&m as a whole, acrms 

the nodes. In this cam, the entire balsnce is distributed to Node 3. 

2.8 Basic network rm&xtun! 

Definition 2. A set S c N is a surplus set if no node in the set has any obligations to any node 

outside the set and the set hss pmitive opecatii income, that is if V(d,j) E S x S, = 0 and 

C d C S  ei > 0, II 

Lemma 1. If p" is a cJesriog vector, then it is not po&ble for all node in a surplus set to have 

zero equity d n e .  

Proof. Suppose S is a mirplm set. Let qt represent the sum of all of the payments received by a 

node i E S from ncdea in S'. By the definition of surplus set, nodes in S make no paymenfs to 
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nodes in 9. Thus, i fd l  nodesin Shave zeroequity value, it must be thecase that 

pa = C%Pj fed  + q, vi E s. 
j € S  

Summing the equations specieed in (3) over i E S thus yields 

using the fact that s is a surplus set, we also have that 

E%==, Vi€S. 
iE8 

Exprersions (4) and (5) imply that 

9 

contradictii our assumption that ZEs ec > 0. 

E!&&lishing existence and uniquene~~ of cleatkg veciors requires that we preaent simple facta 

about the yarchitecture” of the Bnancial system. The existence of a pasitive Wity mnnecting two 

nodes in the system provides a conduit through which the risk of the debtor node can he transferred 

to the creditor. If we abstract from the magnitude of them exposmx, we are left with a deacription 

of the ffnancid system 88 adirected graph in which each debtor is Iinkd via adirected edge to each 

of his crdim. These idem are formalizd Mow. 

Dehition 5. The financial atntcture graph d a t e d  with the hancial S t ~ c t U r e  (&@,e) is the 

directed multigraph whose Vertices we the nodes of the financial network, N, and whose edgea ace 

d e h e d b y i - t j  H J & j > O . l  II 

The direct liabilities of each node in the system are to the ndea to which the agent has 

contradual obligations. However, them direct links by no means exhaust the set of all nodes that 

The teehnidd~inction between adirmt&d graph and adirected multigmph is that in a directed 

graph, there is, at mast, one directad &e connecting any OrPo nodes. In a directed multigraph, any 

number of edges can connect nodes. 



are affect4 by a node's default. Defaults @e through the system, the default of a single node, 

redurn the inflows to its creditma, perhaps trig&ng the default of one of these rreditors, and 

even, perhaps, defaults *her dcffpnstresm. How far dwnstream can the risk of a given node in 

the system travel? An upper bound on propagation is provided by the concept of the rink orbit of a 

node in the system. The risk orbit of anode is the set of rdl nodes which are connected to the given 

node through some directed path, however circuitous, through the system. 

Definition 4. For each node d E N, define the risk orbit of node i, denoted by c(i), as follows: 

o(i) = { j  E#: there exkts adirectad path from $ to j } .  II 

In the financial qmtem illmtrated in Figure 1, the risk orbita of the nodes are given as follows: 

41) = t1,2,3,4) 42) = {2,3,4) 

4 3 )  = {2,3,4} o(4) = {2,3,4). 

The strong& sort of systemic inMependency, from the qualitative point of view we are cur- 

rently pursdng, is for every node to be in the risk orbit of every other node, that is, for the 

financial structure graph induced by the financial system &I,@, e) to satisfy the following condition: 

V(i,  j )  E N x  N, i o(j). When this condition is aatiified we will say the fmsncial system is Xtmngly 

interJinked. When a financial system is strongly interlinked, sh0Ck.i hitting any node in the system, 

can bo passed, perhaps t h n g h  mme very indirect routes, to any other node in the system. Becssue, 

the financial system presented in Figure 1 is not strongly interlinked, shocks to Nodes 2, 3, and 4 

cauoot &t Node 1. HorveEr, simply introducing, say, mme obligation of Node 4 toNodc 1, would 

render the system atrongly interlinked. 

It mnld appear that, becaw they &tract from the xnagnitiide of exposures, alncepta such 

aa strong mnnmtdnw and riak orbits are incapable of providing any i ~ f d  chas.acteriZation o€ 

clearing payment vectom for the system. This b not c o r r d .  In fact, a very simple property of risk 

orbita forms the basis for onr proof of the imiquenm of the clearing payment vector. 

Lemma 2. Suppose that p" is a clearing vector for (lT,@, e),  Let o(i) he a risk orbit that satisfies 



PrmE First note that o(i) is amnplus set. 'Ib see this, note that if some node, say i' in o(i) owed 

something to a node j E dip, then, by appending to the directed path from f. to i' the edge a? + j ,  

one could construct adirected path h m  d to j ,  wntradictbg the amumption that j is not in o(i). 

Lemms 1 shaws that tmrysurplm set w& anode with positive equity value. CI 

The intuition underlying Lemma2 is dear. No financial Dshock" can be absorbed by a bankmpt 

node of the 5ancX SyStRm- The shock must be transfefied, initially perhaI#i to other bantrErrupt 

nodes, but ultimately through some directed path@) through the system to a solvent node. In the 

example considered in Figure 1, the lemma implies, since Node 3 is the only solvent node, that all 

&her nodea wnt&Node 3 within their risk orbits. This is indeed the casa, 88 c&~l be seen fmn the 

risk orbits computed ahwe. 

E.4 E & t m o e / U & ~ e s s  of a de&q pagtment twtm 

Limited liability and priority imply that p' E [O#] is a clearing merit vector if and 

only if the following condition holds: Vi EN, 

The clearinlg payment vector, pmS is thus s&ced point ofthe map, Q,(.;II,p,e): [O,d -f [O,& deaned 

bY 

Q,& U,p, e) (IITp + e) A p. 

An ewnomic interpr&&irm of CP is that Q,(p) repwxnta the total fun& that will be applied to sstisfy 

debt obligations, amuming that ncda receiw infknwc speciaed by p from their debt claims on other 

nodes. The basic propertia of the @map are reccnded in the following lemma. 

Lemma 3. The map Q, is p't im, h-, canatve, and nonexpsnsivt?. 



Each of the regdarity properties of the CP map has a fairly straightfolprard interpwtim. 

The fact that the map is positiw just says that as long as infim from the obligations of other 

nodes are positke, the node wil l  itself make positive payout% Monotonicity raflects the positive 

interdependence of the links in the fhffnencial system. The larger the payout 8 node received from 

other nodes 011 their debta, the kger the payout the node can it& make to other nods. Concavity 

implies that increasing ''dipmion" in the m t u d e  of the variation in paym- made amom 

nodes reduces overall ability to py. Nonexpansivnes reflects the ''at&iIiQ" in the clearing system. 

An inerease in the input vector to the CP map never yields a change in the output vector that is 1- 

in absolute mmtude  than the change in the input. Instead, although individual components of 

the output vector may &row disproportionatly, the change in the overall output vector is no Iarger 

in magnitude than the change in the input vector. 

The previous lemmas Corm the havis for the Grst importRnt result of our analysis: a demomtra- 

tion of the existence of a clearing payment vector associated with every financial system, and of the 

uniqueness of clearing vectom under a fairly weak additional restriction that we. term uregularity.'' 

Definition 6. A financial system h regulsr if every risk orbit, o(i), is a surplus set. 

Lemma 4. The following conditions are each by t h d v e s  s&mt for R financial system to be 

regular: (i) all node8 have pwitive equity balancea or, {if) the system is stmngly interconnected and 

at least one node has a positive cR9h balance. 
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pmof. It follow directly from the deflnitiins of surplus set and stmng intermnn ection, that (i) and 

w, ensure m w .  

Intuitively, re(gularity meam that any maximal d subset of nodes of the 5nancia.l system 

has wme surplua to transter among thenodea ofthe system. The comhy show that this will be 

the case whenever the 5 d  system is strongly interlinked or each ncde is endowed with some 

trmsfemble surplus. 

Theorem 1. CXmwponding to  every firulncial systcrm (II,p, e), 

b. Under d clearing vectors, the d u e  of the e@ty at each node of the b c i d  system is the 

m e ,  thitt is, ifp' mdp0 me any two clearing vectms, 

(@(PI) + e -p)+ = (IF&",") + e -p)+. 

Proof. Let FIX(@) rep-t the set of 5xed points of @. Because Q is mcreashg, @(O) 2 0 

and @@) 5 p, the TBlski 5xed-point thwrem (see, e.&, &idler (1986) Theorem 11.E) implies that 

FIX(@) is non-empw and, m o m ,  pcrrzscres a greafmt and least element. Thus (a) is established. 

'Ibprove(b)letp'beanyclmringvector. W T e W i ~ s h o w t h a t t h e ~ u e o f ~ ~ i s t h e s a m e  

under p1 and p+. This is sufficient to establish (b) . 

To show that the d u e  ofequity is the mme underp' andp+, first note that @ is an in-ing 

map, 88 is the map z --f z V 0  = &. Thus, we must haw, because pf 2 p', that 



then we wodd have that 

Bearusep+ andp- are both clearing vectonr, it atso must be the a ~ s e  that 

Expressions (6), (7) and (8) imply that 

IJ?(p+) + e  - p+ >IF@) + e - p'. 
2 

Now, note tha  II 1 = 1. This implies that 

1. (IIyp+) - p + )  = 1 f (IF@') -#) = 0. 

. Thw, 

1. (n T t  (p ) + e -  p+) = 1. (fl(p') + e . ~ -  p'). 

However, (9) implies that 

14 

The contradiction bet.wen expression8 (10) and (11) establiihw (b). 

Two distinct clearing vectors producing the same equity values at all nodes i.i not possible if the 

financial systmn is regnlar. To see this, fimt note that bocame p+ and p' are distinct clearing vcctom 

and p' 5 pi, and bemuse, for all nodes i that have positive equity value p: = pi = pd, it must be the 

case that for mme i with zero equity valne, p: > d .  Regularity implies that the risk orbit of i is a 

surplusset. By Ifimmas 1 and 2, thereexifits adiredRd path i 7 io 3 i t  -f .. . it. 1 -+ il= j with 
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the property that the nodes $1.. . dt-1 are moquity-due nodes, and it = j is a pitiveerpity- 

d u e  node. Bemuse a csshfloars int0 5eroquit.y nod- are p i d  aut, &-I 3 ik, and p’ 5 p+, it 

follows that 

A,-, < P L  =$ P;, P L .  

l ’ h u s , ~ < p ~ i m p l i e a t h a t & l < p ~ - , .  &muse&-l+bi=j. Itfollwwthatthepaymentti 

received by j are higher underp+ than underp’. Since j has positim equity d u e  under both 

clearing payment “ctors, and the pymentsreceivadby jfmmother nodes cannot be eny d e r  

d e r p +  than they am underp‘ (becmeep’ s p + ) ,  it must bethearse that the d u e  of j ’s equity is 

strietly higher under p+ than it is under p-. Thhi mntmdicts @), and this eontrtmdetion eakiblishe 

W p- = p+, i.e., that (e) holds. 

Some intuition for the importance of regdarity for the uniqwma d t  is provided by the 

hllowiqeKample. Suptheaystemumtahstwunodes,  l andZ,anddncdehasaeen ,  

operatinp: income. Moreaver, each node has nominal liabilities of 1.00 to the other node. In our 

notation we hsve that e = (O,Or, p = (1, l), and 

This syetem is not sregular flnanciaqtikm, because the single risk orbit ofthe syatam {1,2} is 

not a surplus set. In this example, my vectca ofthe formpt = t(l,l),t E [O,l] is a dearing vedor 

forthesystem. In~trad,ifwemoditytheexSmpebygi~onecenttothefirstnodebysetting 

e‘ = (o.Ol,o), we 8ee that the unique clearing vector is gim by p” = (1.00,1.00). The payment 

vectors pt, t < 1, do not eat&& the sbsolute priority condition under gim e‘ because they leave 

Node 1 with an equity balance of 0.01 despite the fact thst Node 1 has not completely ssti4fed ita 

nominal obligation to Node 2. 

3 characteri5ingcleariIlg;vectors 

3.1 Seqp~?nce of &fad& 

In this seetion we show that the ckming vector can be viewed &s the prcduet of aaimulated 

or “fictitious“ default procespl. This pnxpss both permits the construetion of a simple algorithm 
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far identifying cleming vectors and produrn a natural metric for measwiq a node's systemic rlsk 

expanne. We Can this simple algorithm the ffetitiow defsnlt slpforithm. In essence, the idea behind 

the algorithm is strsightforwar. First determine each node's payout aawming that all other nodes 

slltisfy their obligations. If', under the assumption that all nodes pay fully, it is in fact the case that 

all obligations am satisfted, then tennina$e the slgorithm. If some nodes defanlt even when all other 

nodes pay, try to obvious the system again, assumkg that only these Ufirst-order" defaults occur. 

If only firseorder d&ulki occup under the new clearing vectar, then terminste the algxithm. If 

second- defaults occur, then try to clear again aaumbg only second order d&ub occur, eta. 

It is clear that since there are only n nodes, this pmwa must twninste after n iterations. The point 

at wbi& E node defaults under the akpithm is a measure of the node's exposure to the systemic 

risks faced by the clearing systan. 

D e s a i  the algorithm in detail and proving that it is efFectiw? qu i r ea  that we develop 

some new concepts. Let s be the set of supermlntions of the W-point operator 0; that is, 

6 = {p E [O,d : @(p) 5 p]. Note thilt, ibr any such supersolution, h w e  total equity d u e  is 

positive, it must be the case that at le& one node b not ddault, Le., it is not passible that 

@(p) @. For each p E $, let the default set under p ,  which we denote by D(p), be the set of 

nodes i, mch that @(p)i < p,. By the earlier observation, D(p) cannot contain all nodes. Let A(p) 

represent the n x n diagonal matrix dehed as follows: 

A@), is a diagonal matrix w b  d u e s  dong the equal 1 dong the diagonal in those cows r e p  

resenting nodes not in default under p ,  and equal to 0 otherarise. Thus, when multiplied by other 

matrices or vectors, the A matrix converts thc entries corresponding to the nondefaiilting node to 0. 

The complementary m a r k  I - A@) converts entries Corresponding to defaulting nodes to 0. For 

ked p' E S, define the map p --f FF,,t @) as follows: 
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This map, FF9@), simply returns, for all nodes not defaulting under fl, the mqukl payment p, 

and, for all other nodes, retnma the node's d u e  assuminp: that nondef'aulting nodes under p' pay 

in full, and defaulting ncdes under p' pay p .  By our earlier result, Lemma 1, the default set is not 

a surplus &. Thus, A(p)II has a row sum that is less than 1, and no row sum d 1, this, in 

turn, implies that Ppp, has a unique k e d  point by standard input-output m&ix resulta (Karlin, 

1959, Thanem 8.3.2). Call thia fixed point f"). Note that only when p' is a supersolution can 

we be aaqur&d that f(p') is well defined. Next, define inductidy the following sequence of payment 

vectonr 

p* =Is; # = fM-1). P) 

We call thk q'mce of vectors the iktitious dettult sequence, and we call the p- of producing 

these vectors the fictitious default algmXim. 

Lemma 5. The Editious default algorithm &ed in (FDS) produrn a well-defined sequgne of 

vectms, pf. Tbjsqence decmms to the clewing vedor in at most n iterations of the dgorith. 

proof. First, we show by induction that the fietitiow default sequence is well defined and decreasing. 

To show thia, we muat show that far all p', pf is a supmlution to 0 for all j and that the sequence 

($) decreases. We estsblish this result by induction. When j = 0, these aEserticm ace obvious. 

Next, suppose the assertions are true for $. Note that the definition of the A matrix implies that 

A($)$ + (I - A@))@ = $. Because is a supersolution to 0, it must be the cam that for 

all defauting nodes i, (IIpk + e)& 5 $. This implies, combiied with the definition of A, that 

G@) = FF@@). By the induction hypothesis, pk is a supagolution to 'P. Therefore, pk is a 

supemolution to FF+ This fad implies that $+I, the fixed point of FF#, is lesa than or equal 

to pk. Because $+I 5 #, the set of nodea at which default oeom must be no a m a h  under @ 

than under e'. Now, ifthe set of nodes is the same, then = FFp.($), and which implies, 

because by definition $+I is a fixed point of lT+@), that pk+l is a fixed pomt of 'P, and thus 

trivially a supasolution. If the set of defaulting nodes is larger under #+I, then some nodes that 

paid their obligations in full under pk default under @+I, and the rest of the nodes either default 
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under both payment vectonr or under neither. Thus, for these nodes such that default m r a  under 

F' but not $, &,@+')6 < &+I. For all other nodes, the &ued point conatruction implies that 

@+I)i =e'. Thus, we haw that is a supenrolution to 4 and that (pj) is a weakly decreasin$ 

sequence. 

As &own in the previous parsa;rsph, if the set of defaulting nodes is the same under both pi+i 

and p f ,  then (i) pi is a fixed point of 4, and (E) the sequence will remain constant afterpj+l. Jf$ 

fails tobe a m  point of the map 4, then anode that did not default under pi defaults underpf+'. 

In this case, the number of defaulthg nodes, speciaea in the next A matrix,will increase in the next 

iteration. Because there are only n nodas and et majt n - 1 can default in any supersolution, it 

must be the case that the payment vedor produced by the algorithm ceases to change after at most 

n iterations. Because the seque~ce is amstant only at fixed points the clearhg veetor is attained 

in at most II iterations. 13 

The fictitious default algorithm works ea follows. Fit, start with a trial solution which upecif3es 

that all nodes pay their obligations in fiill. E SII node are indeed abIe to sat* their obIig&ions 

amtiming that other nodm meet thein, then the algorithm terminab with a clearing vector. I€ mme 

node defaults under the Arst trial solution, fix the payments of the nondefaulting node under the 

f i t  trial solution at full repayment and solvc the lineax equationti that equate inflows and paymenb 

for thoge nodes that default& under the first trial solution. T h i ~  process generates a second trial 

solution. If no new defaults occur under the m n d  trial soIution, then the second trial solution 

is a clearing vector. However, in the second trial solution, the value of the nodes will be lower 

than at the firrt trial solntion because inflows will be given a smallcr payment vector. Thm, some 

nodes that did not default under the first clearing vector may default under the second. If defaults 

ocmir, then fix the payments of lhe nodexi that did not default under the second trial solution at 

full repayment and solve for the payments of the remaining node, etc. contintid iteration of this 

procedure prodiiw a aeries of payoff vec~ors that converge to the clearing vector. Because the trial 

solution only Chan@;es when a new default o m ,  convergenm mi& occur in at mast n rounds. Note 
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that for large networks, this procedure is much more efficient than the extenrcive procedure of solving 

the linear eqwtiorm that define the clearin@; vecta for all possible subsetg ofnodes, because thissort 

of axtensive procedure requires solving up to !P seta of hear +om rather than at mast the ~t 

hear equations that must be solved using the fictitioua debsut & c a i h  An example illustrating 

the flctitious default algorithm is provided Mow. The pscametars of the finsncial syatem are gim 

aa follows: 

Egample: Fft.tiewua default algorithm 

Fjnantid 

Steps in fietitions d W t  slgorithm: 

In the example of the flctitiom default algorithm, the initial solution, po, is set to full repayment. 

At this solution, Nodea 1 and 4 default. The next solution, p', set to equal the solution to the linw 

equetiomr that clear the system sssumfna; that only Nodes 1 and 4 default. At p', in fact, Node 2 

defaults in addition to Nodes 1 and 4. The next iteration solves for $, the dming vector arisuming 

that only Nodes 1,2, and 4 defeult. Under pa, in fact, 88 arwmed, only Nodes 1,2, and 4 do default. 

Thus, the default set dws not change and the algorithm terminates, producing the clearing vector 

in two iterations. 

In addition to being computa t idy  e5cient, the algorithm has an economic interpretation: 

The step in the algorithm at which a node is added to the dehulting set can be used 89 8 measure 
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of the node's finsncial heaIth. Nod= that defadt under the first trial SoIution are fundamentaIly 

insolvent beuwse they cannot snrvive even with no systemic risk expcsute. Nodes thst frtil in the 

nex& wave are quite fragile in that they fsil whenever insolvent nodes fail. 'she third- 

order failures are triggered by the Mure of w e ,  but not - unsound nodes, etc Thus, 

nodea are partitioned by the algorithm into solvent nodm and 1,2 . . .n - 1-th order failnres. Thus, 

the algorithm, combined with Monte Carlo simulation of income of the nodes, e, oan be 

used to construct a probabiity distrib~ion over orders of defanlt for each node acdJociBted with the 

given stochastic shock to exogenous income. This distribution could form the basis for a practid 

metric for syataniorisk exposure to nodes in a financial network. 

. .  9.8 Prographmig - 
Next we will shuw that clearing merit vectors mu be identified by mlving aIm& any p 

g r y  problem that places weight on paymenta by aU nodea in the system Bubject 

to the limited liabfity condition. Formidly stated, we &sgoci&te with each finandal ays&?m (I&& e), 

and each function f : [O,p] 3 R, the programming is problem 

PP, P ,  e, ff 

8.t. p 5 nTp+ e. 

The link between this programming prohlem and clearing payment vectors for the financial 

system is provided hy the following lemma 

Lemma 6. Iff is slridlJ. increaskg, then m y  solution to P(n, p ,  e, f )  is a clear@ vector for the 

finmdal system. 

Proof. If p" solves P(n, 9, e, c), the the fact th& p" is a feasible solution to P(n, p, e, e) ensure9 that 

p' uatkfiezi the limited liability condition for a clearing payment vector. If ahsoiute priority were not 

satisfled, uay at node i, then it would be the case that p; < p and 
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consider the vector p, which is equal top' in all componentsexcept i, and, fori, is given by p;+e 

where E is ch- aufl-lciently small to emure that limited liability ranains &&Red. Because 

(nTp, + e -P& - W P "  + e - p*)j = &j 2 0, 

p, is feasibe. Becsuaeps is at Ieast equal top" in dl its componenta and greater thanp' in one of 

ita componenta, and f is 6trictly incrcmhg, it must be the case that fw) c f(p& amtmdictii 

U the supmition that p' is a solution to P(n, p, e, f )  . 

Because clawing vectcns are determined entirely by the limited liability and sbsolute priority 

conditions, it follows that these two mnditiona always produce payoff vectors that maxidm the 

total extraction of paymenta from the nodm in the financial systan. Because the cleassng vector 

is unique in any regular 6nancial systan, the d t  also implies that in regular financial aystema, 

dl decision mskers who prefer more payments to less wil l  a w  that the clearing vector masimbm 

their objectives. Thus, for example, whether one attempts to maximbe cents on the d o k  paid or 

total payments, or payme& weighkd by a b i i  weighting acheme that hvors some nodes over 

others, the end result Win be the a a m e h e  selection of the clearing vector. The above d t  shows 

also that, for a regular financial system, solving the programming problem given by P(II,p,e,f) 

for a mitably ch- function f ,  aay a linear 6mction with positive weightii constants, is a way 

of computing the clawing vetor. In fact, this is exactly the approach the monetary authorities 

in Kuwait took to dearing the financial net after the crash of the al-Manakh market. G i m  the 

n-I-step convergence of the fictitiow default algorithm di4eussed above, however, this programdng 

approach may not be an &ent way of computii clearing vectors given thai only one variable 

will be intrcduced into the basic solution on each pivot. Algorithms that exploit the economics of 

the problem, such 88 the fictitious default algorithm developed above, allow for the simultaneous 

introduction of many defaulting nodes in a single step. 

4 The Comparative statics of the ~ h ~ h g  system 

The first question we will ddrm is how this clearing payment vector chanp;es with c b m p  

in the exogenous parameters of the model. We first consider the relationship between this clearitlg 
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payment vector and the opersting income received by the system e, while holding the nomind 

Wity matrix L (or equivalently II and@ constant. Thebaeic chmkhtm . of this rel%tionship 

is provded below. In order to ensure that the d- mctor is unique and, tkm, that cornpmatiw 

statics in the traditional ssxm are possible, wt) hencefd restrid, our attention to regulah hmcid 

systems. 

proof. For the purpose, of this pmf, define the fundion R[O,p] x P'&:-f [O,@] by F(p,e) = 
@@,e;n,p). The clearing payment vector is given by the function f:WH [O,p], de5ued by 

f(e) = FIX(F(.,e)). A theoreq frm Milgrorn and Ibberta (1984) shows tW the tact that F is 

in& in e (established in Lemma 3) implies that f is inmasing. 'Ib see that f is concave and 

nonexpansive, define a aequenn, of functiorm,{f,(e))~~, inductively as fo~ows 

For each &ed e E R++' f,,(e) is just the nth iteration of the map p + @(p; II, p, e) function starting 

at the initial payment vector 0. Thus standard r a d b  on the convergence of iterates of monotone 

increasing operators show that &(e) T f(e), for d e. Using the face that F is nondecreaaing, jointly 

concave in p and e, and nonexpansive, induction s h m  that, for all n, fn is concave and nonexpmive. 

Thus, f is the pointwise limit of non-iye ooncave functions and thus concave and nonexpansiye. 

The abwe argument establishes the claim of the l ema for the function e -> FIX(@(.;II,p, e)). The 

proof of the claim for p --f FJX(@(.;II,p,e)) and 11 --t F'IX(@(.;II,p,e) is identical and thus will be 

omitted. U 

Note that in the standard siugl~period/single-firm financial model, the payment to debtholdem 

eqwh minp,e] where e is the firm's operating earnings and p is the level of the firm's nominal 
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liabilitiea. Thus, the payment received by debtboldem is a concave, incressmg, . nonexpansivefunc- 

tion of the h ' a  opemti i  income end the level of nominal liebilitk Lemma 7 shows that these 

qufditative featum of the debt paymenta m single5nn aettina$ are inherited by the debt payment 

vectors of multi-node clearing systems. This result has a number of direct implidom For ex- 

ample, mmvity of the payment stream in operating income impliea tbt increaaw in the riskinem 

of oParating income, in the eenw of semnd-order stochastic dominance under the mket-pricing 

measure, wil l  reduce the expected payments re-ceid by debtholdem end thus lower the value of 

debt claims. However, sueh risk shifts will not lead unambigwudy to increased equity valuea for the 

nodes in the system. The reason for this is simple. In our model, all debt claims are owned by some 

stockholder at some node ofthe syskan. This implies that increaxs in risk acrw the system have 

two affects. First, they raise the value of equity by lowering the value of the debt paymenb made 

by stockholders to other nodes. Second, the increased risk also lowers the d u e  of the portfolio 

of debt securitiea held aa sssets by each &&holder. Thus, the effect of global risk increases is 

ambigurn. The concaviiy of the clearing payment vector in the relative liabilitiea matrix impliw 

that payment stmcturea that are nondivemi6ed (each firm makes all payments to one other 6rm) 

producesmdleT clearing vectors thansyseamsfeaturingdivasifedclearing vectors (each 5nn has 

roueply equal obli@;atiom to all other nodes). 

Next, note that all of our results am aasC be interpmkd in ternxi of node d u e .  'Ib understand 

this,notethsttheterminal-dateequityinafinancialsystemisIITp*+e-p*, andthedebt isp'(e), 

where p* is the clearing vector fix the h c i d  systes. Thus, the total t e rm id  value of any node 

in the system is the value of debt plus the value of equity, or @p* + e. Total value of dl nodm in 

the economyis thus just 1. @Tp* +e) = 1 .@+e), the sum of the value of equity and the value 

of dl papmnta on liabilities under the equilibrium clearing vector. kom this reault we obtain the 

following Simple corollary to Lemma 8. 
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Another straie;htforwmd, but neyertheh inbmtii consequence of Lemma 6, relatea to the 

effeet of income volatility on the aggegate value of nodes in the 5nandal system. Since, in an 

arbitrage-free economy, the initial value of a node is just the dfsmwzted -on of its terminal 

value under the equilibrium pricing measure, and because the function mapping income to node 

value, e -+ @@(e) + e, is concave, the following corollary to hmma 6 is immediate. 

Thus. node d u e  is redud by unsystemstic ecommic volatility, even though, in our Bnslysis 

their are no disgipative consequences of f i n d  distress even when markets are pafect and fric- 

tionlw. Volstilty reducea the size ofpaymenta between nodes and this reduw the market value of 

nodes. Since, clearly in the frictionha market setup speciaed above, mspmmtic volatility has no 

adverse welfare consequences, this result should be interpreted 88 a caution against interpretii the 

reduction in COrpoFBte value c a d  by unsystematic risk 88 reflecting either market imperfections 

or irrational asset pricing. 

Next, wc show that, in some wm, oonvex combinations of financial syntema can n e w  have 

default or payment rates inferior to the worn of thc two or superior to the better of the two. In 

order to permit a precise formul8tion of this idea, let p*(II, f7, e )  be the clearing payment vector as- 

Soei8ted with an arbitraryfinancial system @,@,e); that k, p"(II,p,e) = FIX[Q(.;@,e)]. A X-convex 

mmbin&ion of the financial systems (II',p',e') and (II",$',e") is the financial system, (%,@,+,ex), 

d e h d  by 

(&,px,ex) = X(a',@',e') t (1 ~~ x)(I",',iji',e"),X E [O, 11, 

Lemma 8. Suppose that the linancid system (IIA,~A, ex) is & A-mnvex combination ofthe h c i a l  

systems (IF, 8, e') and (E", $', e"), then the equilibrium elwing papent vectors of the hmcial 

systems @") satis& the foUm'ng inequalities: 
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Proof. Nota that, for all i E N, thefhcth A -+ Q(p$IA,@A,e.& is linear, and therefore monotone. 

Thus we have that 

Let 

Note that E- and H+ are monotone, kmasing maps defined on [O&] with fixed pointa in this 

order interval. Ifp+ is afixed point of E+ andp- is aftxed point of H-,  then the above inequdity 

implies that 

P- I p*@b.,eA) 5 P+. 

Lemma8 is afairly weak result. However, astrcmgmcharactedaaton, such esaconcavityresult 

fa 5mcid systems, Le., a d t  ahawing that e o m  wmbinetians of systems yield higher psymatt 

rata than convex mmbiiiam of the payment vector of the two syst,ans behg mmbiied, m t  

be obtained. In fact, it is assytoconstruct -1es tothis strongerdwa&mat . ion.2 The 

failure of concavity accura because the map (&p) -+ Q(p;IX,p,e) is not concave, although it is 

mncam in each of the variables, II and p ,  mpamtdy. 
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6 possible extensionS and concluding remarks 

In thb paper, we pmvide conditions for the trxistwce and uniquenem of a clearing vector for 

a complex 5nancial system, the properties of the &acing YBCtor, and provide comparative 

stalh desnbimg the &ionship between the clearing vector and underlying parametera of the 

5nanciaI system. This work reprwab a contriiution to our undemtmding of the mcdeling of 

complex financial systems featukg cydieal obligations between the parties. Howevez, it is only 

a first step in the development ofa d pmgram in this area In fact, one of the virtues 

of our d p i a  is that it can be extended in many directions. Fktemiona fall into three broad 

categoris (i) utilizing the current model for vmrluation and risk adyais; (i) dealing with more 

complex legd/institutionaJ S ~ N C ~ U W  and (ii) incorporating dynamics. 

The simplest extension of the present an&& is to u6e the formulae developed in the paper to 

d u e  firutncial claims and 895e89 default Probabilities for financial networks. Given a atmcture of 

liabilities, the value of the debt and equitq claims for a &xed level of exogenous income at the tenoinal 

date is determined by our model. If we amume exogenous income follows a standard stochastic 

pnx?gs between the initial date and the clesring date, then this sbchastic proma, combined with the 

terminal boundary conditions i m p 4  by our model and standard risk-neutral valuation technology, 

ew ganerate prices for the debt and equity of the nodes in the p t e m  (see, for example, D d e  

(1992)). In addition, probabilities of dciault and default correlation can be easily be computed. In 

addition the distribution of cash flows to each of the nodes also can be computed and inverted to 

yield due-abrbk estimates. 

Fdnding our raiilts to allow for more complex legal and imtitutional structures is almost 

88 transparent. For example, the nodes in the systcm could be allowed to hold intercorporste 

equity claim tm well &s intercorporate debt claims. In this case inflm would be augmented by 

equity as well &s debt inflows. Because equity cl:1Rims are linear, this extension would not mmpliate 

our analyskignificantly. Multiple priority dame? could be Bccommodated by our framework. To 

accommodate multiple priority clmes, we would ntilize a sequential clearing procedure in which fimt 
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a clearing vector for senior claims is found, then the rcsidd d u e  is treated as the exogmus equity 

in the system for the -d clr?arina; of the next high& priority clabu, etc Another imprtmt 

extensfon would be to &ow for violatiom of absolute priority, a &&cant fhctur in corporate 

bmkruptciw, though not in exme of the finsneid network clearhg systems adressed earlier. The 

kag~~omthatdr ivemcstofourresu l ta re tha t tha t torc la imaeFeeont inuaus~din~~ 

in the value of the node. If viWons of absolute priority are the product of &dent multilated 

kgahing, as SIBUmed in much of the literature (ag., Brown, IW), then creditar claims are likely 

to have this property. In networks whm t h m  are substsntial fixed cast4 of h u d  dbtms, 

mntinnity is lcst and, for this reason, one would expwt to obtain more opaque results: hr example, 

the lack ofa unique clewing wctm even when mild regulerity conditions, such as thasa used in this 

paper1 imposed. 

The most difEdt direction of extension would be to allow hr more than one clearing date, and 

thus incorporate true dynamics. In principle the extension is straightforward and would proceed 88 

followa Pirst, alkrar for intercorporate equity and amme that nodes that d&ult at a (iven date 

beanne wholly owned by their creditors h m  thni date forward. Next, allow all nodes to borrow 

iimn a node ouktide the system that itself is not mbject to default risk. The outgide node, or 

‘‘central bank,” would pmvide fimda at a mmpetitive rate. Thus, nodes would only default when, 

at the clearing vector, the d u e  of future inflows is less than the d u e  of liabilities. Using this 

motif, aud backward induction, one could mursively solve for clearing vectors. Uncertainty could 

be intrcduced into this frsmework by m m i v d y  computing the enpected d u e  of future inflaws in 

order to determine the current economic value of the node and thus solve the default problem for 

mccecLsively d e r  pedods. Of course, this sort of axtansion of our aualy&i, t h u g h  the %ume of 

dynamic pmgmmmmf would greatly inatme the complexity of the Bn&ly8i4. 

~ 
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