

FORM 6K

SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

Report of Foreign Private Issuer Pursuant to Rule 13a – 16 or 15 d – 16 under the Securities Exchange Act of 1934

For the month of May 2013

000-29880 (Commission File Number)

Virginia Mines Inc. 200-300 St-Paul Quebec City, QC, Canada G1K 7R1 (Address of principal executive offices)

Virginia Mines Inc. (Registrant)

Date: May 28, 2013

Mail Processing

SEC

Wasnington DC 405

By: Name: Noella Lessard Title: Executive Secretary

Exhibit 1

Technical Report and Recommendations – Reconnaissance Program Trieste Project, Québec

Prepared by: Isabelle Roy, B.Sc., P.Geo., Senior Supervising Geologist; and Rose Anne Bouchard, Trainee Geological Engineer – Virginia Mines Inc.

8 paper copies

000-29880 Commission File Number

Original

SEC Mail Processing

JUN 04 2013

Technical Report 43-101A1

· · · · ·

ŧ

UVashington UC ons 405

Technical Report and Recommendations Reconnaissance Program Trieste Project

VIRGINIA MINES INC. January 2013

Prepared by:

Isabelle Roy, B.Sc., P.Geo. Senior Supervising Geologist Virginia Mines Inc.

Rose-Anne Bouchard Trainee Geological Engineer Virginia Mines Inc.

LIST OF TABLES

TABLE 1. SUMMARY OF PREVIOUS WORK PERFORMED IN 33H01 AND 08 TABLE 2. SIGNIFICANT GRAB AND BOULDER SAMPLES TABLE 3. TARGETS OF TRENCHING PROGRAM, SUMMER 2012, TRIESTE PROJECT. TABLE 4. SIGNIFICANT RESULTS, CHANNEL SAMPLING

LIST OF FIGURES AND MAPS

FIGURE 1: TRIESTE PROJECT LOCATION, SCALE 1:7 500 000 FIGURE 2: TRIESTE PROJECT LOCATION, SCALE 1:500 000 FIGURE 3: CLAIMS NUMBER, TRIESTE PROPERTY, SCALE 1:35 000 FIGURE . GEOLOGICAL MAP OF THE TRIESTE PROPERTY FIGURE 5:LOCATION OF BOULDER AND OUTCROP, FIGURE 6:LOCATION OF ROCK SAMPLES, TRIESTE PROJECT, FIGURE 7. LOCATION OF TRENCHES, NORTH-WEST GRID FIGURE 8. LOCATION OF TRENCHES, SOUTH GRID FIGURE 9. TRENCH TR2012-TR-001 FIGURE 10. TRENCH TR2012-TR-002 FIGURE 11. TRENCH TR2012-TR-003 FIGURE 12. TRENCH TR2012-TR-004 FIGURE 13. TRENCH TR2012-TR-005 AND TR2012TR-006 FIGURE 14. TRENCH TR2012-TR-007 FIGURE 15. TRENCHES TR2012-TR-008 AND TR2012-TR-009 FIGURE 16. TRENCHES TR2012-TR-010 AND TR2012-TR-011 FIGURE 17. TRENCH TR2012-TR-012 FIGURE 18. TRENCH TR2012-TR-013 FIGURE 19. TRENCH TR2012-TR-014 FIGURE 20. TRENCH TR2012-TR-015 FIGURE 21. TRENCH TR2012-TR-016 FIGURE 22. TRENCH TR2012-TR-017 FIGURE 23. TRENCH TR2012-TR-018 FIGURE 24. TRENCH TR2012-TR-019 FIGURE 25. TRENCH R2012-TR-020 FIGURE 26. TRENCH TR2012-TR-021 FIGURE 27. TRENCH TR2012-TR-022 FIGURE 28. TRENCH TR2012-TR-023 FIGURE 29. TRENCH TR2012-TR-024 FIGURE 30. TRENCH TR2012-TR-025 FIGURE 31: 2012 SHOWINGS COMPILATION AND MAGNETIC SURVEY, TRIESTE PROJECT, SCALE 1:50 000 FIGURE 32: FORMER AND NEW SHOWINGS COMPILATION, SCALE 1:35 000

LIST OF APPENDICES

APPENDIX 1. CLAIMS LIST, TRIESTE PROJECT

APPENDIX 2. LIST OF ABREVIATIONS APPENDIX 3. DESCRIPTION OF OUTCROPS AND BOULDERS, TRIESTE PROJECT APPENDIX 4.ROCK SAMPLES LIST, TRIESTE PROJECT APPENDIX 5. DESCRIPTION OF CHANNEL SAMPLING APPENDIX 6. QUALITY CONTROLS, ASSAYS APPENDIX 7. ASSAYS CERTIFICATES.

ITEM 1: SUMMARY

Since the first exploration campaign by Virginia in 1998, limited reconnaissance work has been periodically done in the Trieste area. This sporadic grass root prospecting returned values of 20 g/t gold from a boulder (Linda bloc) and up to 2.60% Zn in grab samples. Since summer 2009 Virginia undertook more intensive exploration program including prospecting and mapping of the 2008 grids, heliborne HD magnetic survey, till survey, line cutting on a new grid (South grid), followed by mapping and prospecting.

During winter 2012, additional line cutting was performed on the South grid and an IP survey (pole-dipole) of 128.5 km was done. These works were designed to verify the potential around the circular high magnetic structure located in south part of the property. During summer 2012, Virginia Mines undertook a field program including mapping, prospecting and trenching.

Unfortunately, no new significant showings were discovered. Trenching program was unable to find the sources of numerous IP axis due to the thick glacial deposits. Most of them have to be tested by drilling.

ITEM 2: INTRODUCTION AND TERMS OF REFERENCE

This report provides the status of current technical geological information relevant to the latest Virginia Mines exploration program on the Trieste project in Québec.

Co-author Isabelle Roy, B.Sc. in Geology and Virginia's Senior Project Geologist, reviews all project and supervises all fieldwork conducted by Virginia Mines on the Trieste property.

Opinions expressed by author for this report are mainly based on their personal field observations. Their comments also rely on previous reports written on the project or any other documents from public domain sources as listed in the reference section.

ITEM 3: RELIANCE ON OTHER EXPERTS

This section is not applicable to this report.

ITEM 4: PROPERTY DESCRIPTION AND LOCATION

At the time of the field work, the Trieste property was composed of one block of claims composed of 591 cells and covering approximately 305km² in the James Bay area. The property is located 115 km SE of the LG-4 airport (James Bay) owned by Hydro-Quebec (Fig. 2). See Appendix 2 for the list of claims.

Geographical references and NTS sheets covered by the Trieste property area :

Latitude: 53°14' 29''North

Virginia Mines Inc.

Longitude: 72°9' 42'' West SNRC: 33H/01 and 08 UTM zone: 18 (NAD 83) NTS: 689 700 mE 5 902 900 mN

ITEM 5: ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRA-STRUCTURE AND PHYSIOGRAPHY.

The Trieste project is located in the central part of the province of Quebec between the Caniapiscau reservoir to the northeast, the LG4 Hydro-Quebec installation to the west and the Mont Otish area to the south (Fig.1). Field operations were conducted from the Noella camp which is owned by Virginia Mines Inc. and located 50 km NNE from the property. The Noella camp is located 57 km SE of the Mirage airport. The camp and the property are only accessible by float- or ski-equipped aircraft and by helicopter. Personnel and supplies were brought by road to Mirage Outfitter floatplane base, 57 km NW of the camp and therefore, by plane to the camp. Mirage is accessible by the all-season Trans-Taïga gravel road.

An Astar BA (Heli-Inter) was used for crew and material transportation. All equipment, including fuel and supplies, were moved to Mirage Outfitter floatplane base by truck and from there by airplane (Air Roberval) to the camp site.

The landscape of the area is relatively flat with regions covered by low altitude rounded hills. Vegetation is typical of taiga including areas covered by forest with others, typically at the top of hills, devoid of trees. Large swamps occupy most of the valley area and the hydrographic network is well developed. At the 1: 250 000 scale, the La Grande and Sakami rivers are the major watercourses and substantial areas are occupied by large lakes.

ITEM 6: HISTORY

6.1 Property ownership

The Trieste project is wholly owned and operated by Virginia Mines Inc.

6.2 **Previous works**

Table 1 summarizes the exploration work performed in sheets 33H/ 01 and 08 to date.

```
Table 1. Summary of previous work performed in 33H/01 and 08
```

```
Geological Survey of Canada (1966)
```

```
- Reconnaissance mapping at a scale of 1: 1 000 000 (Eade, 1966).
```

SDBJ (1978)

- Lake sediment geochemical survey of the Nitchequon Lakes area (SDBJ, 1978).

Ministry of Natural Resources of Québec (1985)

- Reconnaissance mapping and geochemical compilation of the Campan and Cadieux lakes area. (Hocq, 1985).

Ministry of Natural Resources of Québec (1996)

- Lake sediment geochemical survey of the Nitchequon Lake area (Choinière and Leduc, 1996).

Ministry of Natural Resources of Québec (1996)

- Reconnaissance mapping at a scale of 1: 250 000, SNRC 33H 1/8, 23E west. (Gauthier, 1996).

Virginia Gold Mines Inc. - Cambior JV (1998-2001)

- Numerous field programs including prospecting, mapping, geophysical surveys and drilling over Mineral exploration permits (MEP) 1422, 1451 and 1421 (Noella) and surrounding area.

Virginia Gold Mines Inc. (2002-2007)

- Numerous field programs including prospecting, mapping, geophysical surveys and drilling on MEP 1422, 1451 and 1421 (Noella) and surrounding area.

Virginia Mines (2008-2011)

Numerous fields program on the Trieste property including prospecting, mapping, tills survey, IP survey (40km), EMH survey (40km), Heliborne HD magnetic survey (3320 linear km).

ITEM 7: GEOLOGICL SETTING AND MINERALIZATION

7.1 Regional geology

The following description of the regional geology is mainly taken from Gauthier (1996) and Hocq (1985). The study area lies in the Superior Province at the junction of four lithotectonic domains, namely the Archean subprovinces of La Grande, Ashuanipi, Opinaca and Opatica. The

area is dominated by tonalites and granites hosting several Archean greenstone belts of kilometric to deca-kilometric scale.

The Trieste prospect lies in the Trieste greenstone belt (TGB) (Hocq, 1985) in the eastern extremity of the La Grande subprovince, composed essentially of amphibolites of basaltic origin that belong to the Rossignol-Laguiche group (Gauthier, 1996). The metabasalts can be followed over 50 kilometers along a NE-SW trend with an average thickness of 4 kilometers. The volcanic sequence is hosted in a large quartzo-feldspathic gneiss unit of sedimentary origin. Multiple synand post-tectonic intrusions control the geometry of the volcano-sedimentary assemblage.

A simplified description of the most abundant lithostratigraphic assemblages mapped during our exploration work is included below.

7.2 Local geology

The following descriptions of the main lithologies are based on macroscopic observations in the field, especially on the NW grid area where the outcrop exposure is abundant.

7.2.1 Amphibolite

The amphibolite is a black to dark-green colored rock essentially composed of hornblende and plagioclase with various proportions of quartz, actinolite, garnet, biotite, phlogopite, sericite, calcite and epidote. Metamorphism has created a range of aphanitic to medium-grained and granoblastic textures. Primary textures have been obliterated by the amphibolite- to granulite-metamorphic facies and by the strongly-developed regional schistosity. Occurrences of decimetre-scale pillows with elongated centimetric aphanitic borders are concentrated in the NW Grid Area. The amphibolites have been interpreted as basalt flows intercalated with layers of komatile, felsic volcanic domes and sedimentary units ranging from conglomerate to iron formation (Gauthier, 1996). Narrow base metals mineralization is locally observed between the pillows on the NW grid.

7.2.2 Quartzo-feldspathic gneiss

The gneiss is a medium- to dark-grey colored rock mainly composed of plagioclase, quartz and biotite in various proportions. Accessory minerals include Kspar, muscovite, garnet, hornblende and magnetite. Because of the high metamorphic grade, the quartzo-feldspathic gneisses are generally coarse-grained and granoblastic. Locally, mafic segregations creating biotite schlieren and layered textures are observed.

The gneiss has a biotite content generally over 30% of the total rock volume and was described as a wacke sedimentary unit. Granitic leucosoms with centimetric to decimetric thickness are omnipresent. Throughout the prospected area, the wacke is related to a paragneiss of sedimentary origin composed of 60-70% wacke and with 30-40% pegmatitic injections due to partial melting.

Several outcrops of metasedimentary (paragneiss) rock interpreted as wacke were observed in the northern part of the NE grid and the southern portion of the NW grid. They are composed of plagioclase (30-40%) and quartz (20%) and biotite (20-30%) and characterized by granoblastic texture and the presence of muscovite porphyroblasts (5-20%) (1-2cm).

7.2.3 Felsic to intermediate volcanoclastite

Few outcrops of felsic to intermediate gneiss were mapped in the metabasalt region. They are described as light brownish to light-grey colored rocks mainly composed of quartz and plagioclase. Muscovite is a dominant accessory mineral but biotite and sericite occur as well. The rocks are usually fine-grained with local lapilli texture, but generally the felsic unit is strongly affected by the regional deformation and exhibits a well-developed schistosity.

Because of the scarcity of outcrops, the extensions are difficult to follow for more than 200 meters laterally and 100 meter across lithostratigraphy. As mentioned above, they are interpreted as felsic to intermediate volcanoclastites that form part of a bi-modal volcanic sequence (Gauthier, 1996). This lithology was not observed on the NW grid.

7.2.4 Silicate-Rich and Oxide-rich Iron formation

Iron formations are medium- to dark-green colored banded rocks composed of centimeter-scale quartz-rich bands interlayered with silicate-rich bands or magnetite-rich bands. They both constitute strong magnetic anomalies on the NW grid. Their presence was not noticed on the NE grid due to lack of outcrop exposure.

Silicate-rich iron formations occur in areas of low relief and thus rarely exhibit good surfaces for observation. Due to their conductive nature, they were often found by geophysics and then cleared by shovel. Silicate-rich iron formations may also have been misinterpreted and confused with strongly-altered metabasalt.

The silicate bands are composed of hornblende, garnet, actinolite, grunerite and biotite. The volume of sulphide ranges from trace to 20% of the rock and usually consists of a large proportion of pyrrhotite and pyrite. Arsenopyrite, chalcopyrite and sphalerite are also observed in samples. The chert bands are aphanitic to fine- grained and granoblastic, whereas the silicate bands are characterized by medium- to coarse-grained, porphyroblastic texture. Garnet porphyroblasts up to -1.5 centimeters in diameter are also present.

The magnetite-rich iron formations are composed of magnetite that range from 15% to 40% interlayered with chert bands (40-60%). Chert bands are also aphanitic to fine-grained. They also contain grunerite and amphibolite (5-10%) and locally garnet. They are often mineralized in pyrrhotite (2-5%) and arsenopyrite (tr-5%).

Both types of iron formations were observed within the NW grid limits and their average thickness varies from one meter to 15 meters. A silicate-rich iron formation was encountered 5km east of the Linda bloc and contains 50% of dark amphibole or pyroxene, 30% of quartz, 10% of green amphiboles, 5% garnets, 5% of chlorite and was injected by quartz veins.

7.2.5 Exhalite

Several exhalative horizons were outlined in contact with or nearby iron formation occurrences. In fact, most of the exhalite horizons were discovered while prospecting for those iron formations. They are composed of quartz (40-60%) interbedded with sulphides (20-40%) such as pyrrhotite and pyrite and more locally chalcopyrite, molybdenite and sphalerite. Some occurrences present breccia textures. Alteration minerals such as chlorite, muscovite and fuchsite were also noticed within this unit. The Chirki and the SNPL showings are both hosted in a brecciated exhalite horizon in the NW grid.

7.2.6 Chert

Chert horizons were also observed in the NW grid. They are often spatially associated with iron formation and exhalite. Chert horizons are composed of fine grained quartz (60-90%), biotite (5-10%) and are often mineralized in graphite (2-25%), pyrrhotite (2-15%), pyrite (2-5%) and arsenopyrite (tr-2%). Chlorite (tr-10%) and muscovite (tr-15%) were also noticed as alteration minerals in the chert horizons.

7.2.7 Ultramafic Rock

Ultramafic rocks were encountered on the NW grid. They occur in contact with amphibolite (basalts) and are strongly magnetic. Ultramafic rocks are dark green colored, medium grained and present a massive texture. They are composed of tremolite (20-50%), hornblend (20-30%), actinolite (10-30%), clinopyroxene (10-30%), chlorite (5-10%), serpentinite (5-15%) and magnetite (2-5%).

7.2.8 Pegmatite

Pegmatite dyke occurrences were more abundant in the metasedimentary package on the property. Moreover, on the Southern part of the NW grid, several outcrops of pegmatite rich in muscovite (5-20%) were outlined near the contact between the volcanic rocks to the north and the metasedimentary rocks to the south. The other minerals contained in those pegmatites are quartz (25-35%) and plagioclase (50-60%), representing a tonalitic composition. The abundance in muscovite along the contact between volcanics and the metasedimentary unit should be kept in mind as a favourable conduct for fluids rich in water.

7.2.9 Metasediment

Metasediments rocks were often encountered on the south grid. They frequently occur with pegmatite dyke. This unit is composed of quartz (30-50%), plagioclase (30-50%), biotite (20-35%), garnets (1-15%), chlorite (trace-1%) and opaque mineral (trace-1%). Metasediments are generally medium grained, foliated and heterogeneous. The 2011 campaign reveals a metasedimentary unit, in the south grid, containing stockwerk of centimeters- to decimeters-scaled quartz veins. Wall rock of these veins are often silicificated and/or altered by a chlorite-hornblende-garnet package. This unit does not contain homogeneous mineralization. Generally, mineralization occurs locally in these wall rock and may be conductor. This mineralization is composed of 1% to 5% pyrrhotite, 1% to 2% pyrite and trace to 1% chalcopyrite.

7.3 Significant mineralization

This section present main showings discovered on the property since 1998.

7.3.1 NW grid:

The Chirki showing was discovered using beep-mat and corresponds to a max-min conductor. It is constituted by a mineralized breccia of semi-massive sulphides composed of 20-40% pyrrhotite and 5-10% arsenopyrite. The host rock is injected by quartz veins. The protolith is hard to determine due to metasomatism that affected the rock. Silicification, epidotization and chloritization are among the alterations observed in that rock. This mineralized zone is 8.5m thick and occurs between a amphibolitic schist interlayered with iron formation to the north and an oxide-rich iron formation to the south. It returned values of 1.02 g/t Au over 0.50 meters from channel sample

The SNPL showing was also discovered using beep-mat and corresponds to a max-min conductor. It is constituted of semi-massive sulphides containing 20-40% pyrrhotite, 5-10% pyrite, 3-20% sphalerite, 1-2% chalcopyrite, trace to 1% galena and local trace of arsenopyrite. Sphalerite occurs in beds. The mineralization is strongly silicified and brecciated and contains alteration minerals such as chlorite, sericite and fuchsite (?). Values of 2.63% Zn and 12.7 g/t Ag were obtained from grab sample while channel sample delivered values of 2.65% Zn; 0.16% Pb; 0.08% Cu; 19.3 g/t Ag and 0.10 g/t Au over 3.00 meters (TRI-2009-R-003). The metal content of this mineralization suggest a VMS affinity (Ag,Cd,Cu,Pb,Zn). Notice that the channel performed 50m toward west did not return any significant values. To the north of the mineralized zone, an oxide iron formation is present and returned values of 0.53 g/t Au from a grab sample (135251).

7.3.2 Mineralized boulders:

The property host numerous mineralized boulders.

North of south grid:

Just at the north end of the South Grid, the northern boulder cluster contains several gold bearing boulders of iron formation. Grades vary from 1.1 to 16.9 g/t Au. The 2009 till survey highlighted a gold grains anomaly aligned with the glacial trend and the gold-bearing boulders.

The southern boulder cluster contains more than ten boulders spread over 6km and on a trend oriented N060. It includes the intriguing Linda Block. The composition of this boulder is clinopyroxene-quartz with 3% arsenopyrite and 1% pyrrhotite. The source is possibly an intense calco-silicate alteration zone. Best assay is 20.6 g/t Au (Grenier et , 2008). The composition of other boulders is generally interpreted as silicate rich iron formation mineralized in sulphides. Grades vary from 0,6 g/t to 6.8 g/t Au.

ITEM 8: DEPOSIT TYPE

This section is not applicable to this report.

ITEM 9: EXPLORATION WORK

9.1 Prospecting and mapping work

Prospecting and geological mapping was carried out from July 26th to August 28th 2012. All geological data was collected by geologist Isabelle Roy, by Trainee Geological Engineer Jean-François Boivin and Rose-Anne Bouchard, by trainee geologist Julien Avard, by assistant geologist Roby Aumond, Gabriel Côté, Antoine Fecteau, Marie-Christine Gosselin, Jeanne Lavoie-Deraspe, Mathieu Leblanc-Bolduc and by technicians David de Champlain and Catherine Tétreault from Virginia Mines Inc. The crew was assisted on the field by Mrs. Jimmy Blacksmith and Shawn Rabbitskin from Mistissini community.

A total of 155 outcrops, 52 boulders were described and 104 rocks samples were collected from the Trieste property. Results are presented in appendix 3 and 4.

Excluding boulder TR2012-CSH-039, the two best gold values are on trenches. Sample 271563 from an altered and mineralized basalt returned 0.714 g/t Au, the same that returned 3.19 g/t Au in 2009.

The second value (sample 271565) is an exhalite unit (chert) with 10% arsenopyrite, 5% pyrite and 2% chalcopyrite from trench TR2012TR-005. Unfortunately, channel sampling returned no significant value.

Outcrop TR2012JLD 018 returned two gold bearing samples (0.36 and 0.317 g/t Au). Channel sampling on this outcrop returned 0.33 g/t Au over 5,5m (Trench TR2012TR-025). Silicified and chloritized wacke present 1% arsenopyrite in coarse bleb and 3% of disseminated pyrite.

Boulder TR2012-CSH-039 returned the best gold value of summer 2012 (2.62 g/t Au, sample 271607). In 2011, a cluster of three boulders of iron formations had returned gold value from 1.47 to 6.24 g/t Au. Numerous IP axis are present in the area and were targeted for trenching. Because of thick glacial deposits, sources of boulders and IP axis remain unknown.

I

No sample	No outcrop /boulder	Туре	HostRock	Mineralization	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Zn_ppm
271563	TR2012TR-001	Outcrop	M15	PY(1) AS(1)	0.714	<-0.2	3060	263	32
271565	TR2012TR-005	Outcrop	S10	AS(10) PY(5) CP(2)	0.506	<0.2	10000	141	13
270907	TR2012JLD- 018	Outcrop	M15 M15	PY(3) AS(1)	0.36	0.3	287	171	9
270908	TR2012JLD- 018	Outcrop	M15 M15	PY(3) AS(1)	0.317	0.3	831	65	7
270959	TR2012RB-008	Outcrop	V2J M15	MG(1) PY(3) PO(2)	0.259	0.6	76	275	56
271601	TR2012TR-002	Outcrop	M15		0.229	<0.2	2900	211	77
271566	TR2012TR-005	Outcrop	S10	AS(10) PY(5) CP(2)	0.163	<0.2	7120	12	27
271607	TR2012CSH- 029	Boulder	S9A	AS(10) PO(2)	2.62	0.5	3840	123	11
270524	TR2012RA-064	Boulder	S10	PO(5) AS(3) SP(1) CP(1)	0.21	1.7	5	1050	202
270956	TR2012RB-005	Boulder	V2J	PY(30) PO(5)	0.088	4.8	55	421	165
270955	TR2012RB-004	Boulder	V2J	PY(30) PO(5)	0.025	2.3	44	173	96
270808	TR2012JA-014	Boulder	V3B		0.023	1.9	12	1365	8
270980	TR2012RB-054	Boulder	V2J	PY(3)	<0.005	0.5	2	198	1835

Table 2. Significant grab samples, summer 2012, Trieste project.

9.2 Trenching program

Trenching program was performed in 2012. On the North West grid, we mobilized a small Spider 1600 (FMC group) excavator by helicopter. Six trenches were done on the 2009 showings. Table 3 presents the list of targets of the 2012 trenching program.

A Kubota KX121 excavator was mobilized on the property to perform an extensive trenching program all over the South grid. An helicopter Astar B3 from Peak Aviation and a Astar B2 from Heli-Inter were used.

More than fifty-four (54) targets were tested with the excavator (see table 3) but only twenty trenches were opened. Quaternary deposits are present all over the South grid but are very thick on the south part (where grid lines are oriented NS).

Most of the IP axis remain unknown and request to be verify by drilling.

A summary of each trench objectives, geological description and economical result is following below. The reader could refer to table 4 for a summary of the best channel results, to figure 7 to 30 for the detailed mapping of each trench and sample location. The appendix 5 summarises the channel description and values.

Proposal	Trench	X utm18 nad 83	X utm18 nad 83	Target	Comments
PRO-TR-2012-01	n/o	689644	5898079	PP23	Low MAG anomaly
PRO-TR-2012-02	n/o	689634	5898136	PP22	Lateral extension of low MAG with IP axis PP-23.Could be associated to grab sample (1.37 g/t Au).
PRO-TR-2012-04	n/o				Low mag
PRO-TR-2012-04B	n/o	690024	5989505	PP21	PP21
PRO-TR-2012-05	n/o	690027	5898383	PP20	High IP anomaly, Forte PP, near a low mag
PRO-TR-2012-06	n/o	690220	5898438	PP19	Extended IP axis (PP19 and PP20)
PRO-TR-2012-07	TR2012TR-007	689214	5898749	PP17	
PRO-TR-2012-08	TR2012TR-008, TR2012TR-009	688367	5898499	PP19	
PRO-TR-2012-09		688009	5898823	PP17	
PRO-TR-2012-10	TR2012TR-010, TR2012TR-011	688010	5898802	PP35	
PRO-TR-2012-11	n/o	690068	5899505	PP10	Low resistivity, high chargeability, on the side of small low mangetic anomaly. Under swomp and water.
PRO-TR-2012-12	n/o	688287	5898732	PP36	
PRO-TR-2012-13	n/o	688261	5898932	PP33	extension of PP16, high chargeability.
PRO-TR-2012-14	n/o			PP18	no access, IP anomlay under water
PRO-TR-2012-15	n/o	690601	5899591	PP10	Low resistivity and high chargeability associated to a iron formation (S9?) in a hig mag anomaly
PRO-TR-2012-16	n/o	691398	5899644	PP10	iron formation ? (S9?)
PRO-TR-2012-17	n/o	690589	5900167	PP4	high magnetic anomaly
PRO-TR-2012-18	n/o	689603	5899461	PP8	low resistivity, iron formation?
PRO-TR-2012-19	n/o	689244	5899942	PP2	margins of circular anomaly, low resistivity, hig chargeability, under water
PRO-TR-2012-20	n/o	688983	5899850	PP1	Margin of circular anomaly magnetic, IP anomaly high chargeability/low resistivity
PRO-TR-2012-21	n/o	688200	5900008	PP2	margin of circular magnetic anomaly (high)
PRO-TR-2012-22	n/o	687795	5900092	PP25	margin of circular magnetic anomaly (high)
PRO-TR-2012-23	n/o	686419	5898921	PP45	

Table 3. Targets of trenching program, summer 2012, Trieste project.

Virginia Mines Inc.

Page 10

.

Proposal	Trench	X utm18 nad 83	X utm18 nad 83	Target	Comments
PRO-TR-2012-24	n/o	687600	5899051	PP37	IP in a low mag, extension of axis PP33?
PRO-TR-2012-25	n/o	686835	5898925	PP17	large IP anomaly at margin of a low magnetic
PRO-TR-2012-26	n/o	686235	5898877	PP39	large IP anomaly at margin of a low magnetic
PRO-TR-2012-27	n/o	686384	5900104	PP27	IP in a low mag
PRO-TR-2012-28	n/o	686238	5900175	PP52	in margin of a break in magnetic survey, near a low mag
PRO-TR-2012-29	n/o	685880	5900370	PP54	IP in a very distubed area in th magnetic survey
PRO-TR-2012-30	TR2012TR-018	686769	5900623	PP47	Outcrop TR2011SH-020 M3 Si++ BO++, forte IP anomaly
PRO-TR-2012-31	TR2012TR-019	685346	5900897		Grab sample 2011 at 0.889 g/ (sample 251005) in a silicified M4/S3
PRO-TR-2012-32	TR2012TR-020	685415	5900867		Follow up on a grab sample at 0.641 g/tAu (sample 251023)
PRO-TR-2012-33	n/o	686099	5901564	PP48	On the margin of circular magnetic anomaly. Very high resistivity and very high chargeability.
PRO-TR-2012-34	n/o	685235	5901107	PP55	Isolate IP anomaly in the margin of a low mag
PRO-TR-2012-35	TR2012TR-021	686226	5902358	PP49	margin of circular magnetic anomaly (high)
PRO-TR-2012-36	TR2012TR-022	686125	5901953	PP49	margin of circular magnetic anomaly (high)
PRO-TR-2012-37	n/o	685790	5902525	PP50	
PRO-TR-2012-38	n/o	685150	5901694	PP56	Large IP in the margin of magnetic perturbation.
PRO-TR-2012-39A	TR2012TR-001	685542	5908078		Target showing of 2009: 3.17 g/t Au (sample 135184)
PRO-TR-2012-39B	TR2012TR-003	685416	5908081		Target showing of 2009: 3.17 g/t Au (sample 135184)
PRO-TR-2012-39C	TR2012TR-002	685557	5908124		Target showing of 2009: 3.17 g/t Au (sample 135184)
PRO-TR-2012-39D	TR2012TR-004	685101	5908192		Target showing of 2009: 3.17 g/t Au (sample 135184)
PRO-TR-2012-39E	TR2012TR-005	683380	5907728		Base metal showing: SNPL showing at 2.65% Zn; 0.16% Pb; 0.08% Cu; 19.3 g/t Ag and 0.10 g/t Au over 3.00 meters
PRO-TR-2012-39F	TR2012TR-006	683355	5907728		Base metal showing: SNPL showing at 2.65% Zn; 0.16% Pb; 0.08% Cu; 19.3 g/t Ag and 0.10 g/t Au over 3.00 meters
PRO-TR-2012-40	TR2012TR-017	685906	5899853		Return on sample 251054 at 0.216 g/t Au
PRO-TR-2012-41	TR2012TR-014	684727	5897399		
PRO-TR-2012-42	TR2012TR-013	684798	5897383		Follow-up on TR2009JL-010, sample 193999 at 0.169 g/t Au

Proposal	Trench	X utm18 nad 83	X utm18 nad 83	Target	Comments
PRO-TR-2012-43	TR2012TR-0112	684815	5897378		Follow-up on TR2009JL-012, samplen 135352 at 0.154 g/t Au
PRO-TR-2012-44	n/o	686592	5900807	PP47	
PRO-TR-2012-45	TR2012TR-023	686118	5902180		Follow-up on TR2011JFB- 012,sample 251302, conductive outcrop, alteration zone (M15)
PRO-TR-2012-46	TR2012TR-024	685931	5902363		Follow -up on TR2011DDC- 002,sample 251352 à 0.113 g/t Au
PRO-TR-2012-47	TR2012TR-015	684880	5897718		Conductive to BEEP map and rusty outcrop.
PRO-TR-2012-48	TR2012TR-016	684970	5897697		Following on a old outcrop of exhalite (JF-LIN02-02)
PRO-TR-2012-49	n/o	686430	5900992	PP47	
PRO-TR-2012-50	n/o	686129	5901365	PP48	proximity to a conglomerate outcrop
PRO-TR-2012-51	n/o	686181	5902149	PP49	
PRO-TR-2012-52	n/o	685590	5901722		proximity of an iron formation outcrop
PRO-TR-2012-53	n/o	689477	5898881	PP15	
PRO-TR-2012-54	n/o	690981	5898492		

Table 4. Significant values, channel sampling, Summer 2012, Trieste project.

Trench	Values
TR2012TR-001	1.6 g/t Au over 1.0m
TR2012TR-017	0.44 g/t Au over 1.0m
TR2012TR-019	0.46 g/t Au over 1.0m
TR2012TR-025	0.33 g/t Au over 5.5m

9.2.1 Summary of trenches

TR2012TR-001 (Figure 9)

The target for the trench TR2012TR-001 was an outcrop of basalt where a grab sample returned a value of 3.17 g/t AU (Savard, 2010). The trench is located on NW grid where volcanic mafic rocks are abundant. Multiple EMH conductors are present on the grid. The source of many of them is iron formation

The trench is at the extreme north of the grid. Banded andesite is observed at the south part of the trench and the north is dominated by basalt. At the center, an alteration zone is exposed over 18 meters. It consists in basalt injected by multiple quartz-garnet-carbonate-chlorite veins that cause a breccia texture. Origin of that breccia is unknown (magmatic, phreatic etc) but the presence of tourmaline is a sign of hydrothermal activity. Two zones of 4 to 5 meters-long contain sulphides

as pyrite, pyrrhotite (traces to 2%) and arsenopyrite (traces to 2%). The 2009 grab sample is coming from one of these zones.

Channel sampling returned 1.55 g/t on 1 meter and another anomalous zone at 0.26 g/t Au over 3.7m. Grab sample had given 0.71 g/t Au (ref: 271561).

TR2012TR-002 (Figure 10)

Trench TR2012TR-002 is located 35 m at NW of the trench TR2012TR001. The objective was to verify the lateral extension of the mineralized zone. Unfortunately, trench orientation is parallel to the main schistosity.

Trench exposes the contact between a basalt with an alteration zone composed of hornblende, garnet, chlorite and biotite. The contact is mineralized in traces of fine disseminated pyrrhotite and coarse blebs of arsenopyrite. Orientation of the main schistosity is N285 with near vertical dip.

Channel sampling returned no significant gold or base metal value. Grab sample returned 0.23 g/t Au (ref: 271601).

TR2012TR-003 (Figure 11)

Target is a rusty outcrop at 125m west of trench TR2012TR-001.

Trench exposes a very interesting breccia unit over 40 m. Origin of the breccia is unknown (magmatic, phreatic, etc...). Fragment composition is monogenic (volcanic felsic unit) except at the extreme north of the trench where some fragments of different compositions are found. A strong sub vertical lineation affects all the units. Composition is very heterogeneous. It is composed of a series of very stretched "pencils" causing a pseudo banding and rich in quartz-feldspar and phlogopite or hornblende-chlorite-garnet. Breccia matric contains disseminated sulphides such as pyrite and pyrrhotite all over the unit.

A submetric unit with high content of quartz (chert?) returned the best gold value in the channel sampling (0.179 g/t Au over 1m).

TR2012TR-004 (Figure 12)

Trench TR2012TR-004 is at 400m NW of the TR2012TR-001. It is outside the grid (not located in the EMH ground survey).

The extreme NE is a natural outcrop composed of andesite silghly mineralized in pyrite and arsenopyrite. Unfortunately, we couldn't open the trench up north due to the presence of a swamp. To the south, the trench exposes the shear contact with an altered basalt unit silicification, biotisation and chloritization).

No gold value was obtained in grab and channel sampling.

TR2012TR-005 (Figure 13)

Trench TR2012TR-005 was done on the SNPL showing, discovered in 2009. It is constituted of semi-massive sulphides containing 20-40% pyrrhotite, 5-10% pyrite, 3-20% sphalerite, 1-2% chalcopyrite, trace to 1% galena and local trace of arsenopyrite. Sphalerite occurs in beds. The mineralization is strongly silicified and brecciated and contains alteration minerals such as chlorite, sericite and fuchsite (?). In 2009, values of 2.63% Zn and 12.7 g/t Ag were obtained from grab sample while channel sample delivered values of 2.65% Zn; 0.16% Pb; 0.08% Cu; 19.3 g/t Ag and 0.10 g/t Au over 3.00 meters. The metal content of this mineralization suggest a VMS affinity (Ag,Cd,Cu,Pb,Zn).

The 2009 handmade trench was extended with the excavator and additional channel sampling was done at the north and the south of the previous channel. It exposes a banded and altered unit (exhalite or chert) mineralized in arsenopyrite (tr-15%), pyrite (1-5%) and chalcopyrite (tr-2%). Alteration in epidote, garnet, séricite, silice and chlorite is present.

No additional significant gold or base metals values were obtained by channel sampling.

Trench TR2012TR-006 (Figure 13)

This trench was done at 25m west of the Trench TR2012TR-006 (SNPL showing) on a conductive outcrop found with a BeepMap.

The geology is identical to the SPNL showing. It consists of an exhalative unit characterized by centimetric banding and altered in epidote, sericite and chlorite. We observe sulphides locally in small amounts: traces to 5% arsenopyrite.

No significant gold or base metal values were obtained by channel sampling. The SPNL mineralization seems to have limited lateral extension.

Trench TR2012TR-007 (Figure 14)

The target is a very large IP anomaly (over 240m wide) characterized by high chargeability and low resistivity (IP axis PP17-19). The trench is located at the north part, and the south half is under a lake.

Trench exposes over 30 meters a homogenous sedimentary unit (wacke). It is injected by veins of felsic material with a border zone rich in biotite-chlorite. Traces of a green mineral we suspect is beryl is observed. At the center of the trench, we observed an altered and strongly silicified zone. It contains also garnet-chlorite and garnet in centimetric and irregular blebs. Sulphides are observed: 5-10% pyrrhotite and traces of chalcopyrite. This zone is probably the source of the IP anomaly.

No significant gold or base metal values were obtained by channel sampling.

Trench TR2012TR-008 (Figure 15)

The target is a wide IP (axis PP19-24) characterized by high chargeability and low resistivity in an area with no outcrops.

The trench exposes a sedimentary unit (wacke), locally banded (gneissic?). It is injected by millimetric and centimetric veins of quartz-feldspar-carbonates. Disseminated sulphides are observed (2 to 4% of pyrite and pyrrhotite).Concentration of sulphides is higher near the contact with veins. Unit is moderately to highly deformed with a gneissosity oriented N295 and sub vertical dip.

No significant gold or base metal values were obtained by channel sampling.

Trench TR2012TR-009 (Figure 15)

The target is a very large IP anomaly (over 100m wide) characterized by high chargeability and low resistivity (IP axis PP19 and PP24).

Trench exposed a wacke unit injected by quartz-plagioclase-carbonates-chlorite veinlets. Traces to 1% pyrite are observed all over the trench and in many forms : disseminated in the matrix, in fine blebs associated with veinlets etc.

No significant gold or base metal values were obtained by channel sampling.

Trench TR2012TR-010 (Figure 16)

The target is the western part of axis IP 35, characterized by a high chargeability and high resistivity and at proximity of the trench TR2012TR-011 (less than 40m).

The small trench exposes on 10m a wacke with porphyroblastic texture (garnet). It is injected by quartz veinlets and chlorite veinlets .Pyrite (2%) is associated with them but also found in fine blebs in the sedimentary matrix. Disseminated graphite is observed in proportions from 2 to 5%. A dyke of pegmatite with tourmaline, biotite with pyritized contacts is present. Unit is moderately deformed with a principal schistosity (Sp) at N095 and with a sub vertical dip.

No significant gold or base metal values were obtained by channel sampling.

TR2012TR-011 (Figure 16)

The target is the western part of axis IP PP 17, characterized by a high chargeability and high resistivity.

The trench exposes a wacke with some arenitic zones with less biotite content. It is injected with veins and veinlets of quartz-plagioclase-chlorite and opaque minerals. Disseminated pyrite and pyrrhotite are observed and in fine blebs in association with veins as well. Proportion is less than 2%. Graphite is observed locally and could be the source of the IP anomaly.

Channel sampling returned no interesting value.

TR2012TR-012 (Figure 17)

Trench TR2012TR-012 is one of three trenches done in the Linda Block area. It is off the South grid and the area is not covered by IP survey. The target is a 2009 outcrop of silicate iron formation that graded 0.154 g/t Au and 0.13% W (sample 135352, Savard and Archer, 2009).

Trench exposes a metamorphosed sedimentary unit (wacke to paragneiss). It is injected by decimetric veins of quartz-plagioclase-biotite±chlorite±carbonates. Mafic bands can contain amphibole. Traces of disseminated pyrite are present in the matrix. Fine blebs of PY are present in leucosom and at their contacts. Blebs of PO are present in margins of a quartz vein. At the center of the trench, a more schistose and rusty metric zone from where comes the gold bearing sample of 2009 (grab) Orientation of the main schistosity is N285 with a strong dip (75°). Channel sampling returned no interesting values.

2012TR-013 (Figure 18)

This is the second trench of the Linda Bloc area. The target is a conductive outcrop of silicate iron formation that returned 0.169 Au/t Au (sample 193999, Savard, 2010).

Trench exposes a paragneiss over 15m. On the north half of the trench, we observe a rusty mineralized zone composed of chlorite-epidote and quartz veins with semi massive sulphide including 15% pyrite, 8% pyrrhotite and traces of chalcopyrite. Fine disseminated pyrite is present in the paragneiss all along the unit, and on the leucosom margins (traces to 2%). The orientation of the gneissosity (Sp) is N295 and a dip at 75.

Channel sampling of 2 meters was done on the mineralized zone in 2009. In 2012, we took a grab sample with a grade of 0.156 g/t Au. Additional sampling in 2012 reports a value of 2.19 g/t Au over 3 m. Suspecting a contamination by the laboratory, Virginia Mines requested for additional analyses (see Item 12-Data verification). Contamination was confirmed by laboratory. Reanalysis results are below the detection limit.

TR2012TR-014 (Figure 19)

The target of this trench is a conductive outcrop (Beep map) interpreted as a basalt with decametric band of graphitic schist with biotite and amphibole (but it could be interpreted as a silicate-iron formation as well).

Principal geological unit is a paragneiss showing traces to 35% leucosom. Partial melting seems to be more important in the south part of the property. It is injected by some metric pegmatite with traces of beryl (?, mineral "turquoise"). A metric alteration zone is present in the south part of the property and is composed of amphibole-garnet-quartz-carbonate with 5% pyrrhotite in blebs. A mafic dyke composed of clinopyroxene and biotite is observed in the north part. A schistose zone is present in contact with the paragneiss. It is mineralized in pyrite and pyrrhotite \pm chalcopyrite (in traces in the matrix and blebs in association with leucosom).

No significant value was obtained in channel sampling.

TR2012TR-015 (Figure 20)

Target is a rusty and conductive outcrop (with a Beep Map).

The trench exposed a metasedimentary unit with an arenitic composition. The north half is strongly deformed and shows a prototmylonitic texture with highly deformed feldspar and quartz grains. It includes two metric and rusty alteration zones. They are strongly chloritized and contain 6% of disseminated pyrite and pyrrhotite in the matrix or in blebs associated with chlorite. Arenitic unit contains traces of disseminated pyrite as well.

Main schistosity is oriented N105 with steep dip to the south. In the north half of the trench, it is nearly vertical.

No significant gold or base metal value was obtained by channel sampling.

TR2012TR-016 (Figure 21)

This trench is a follow-up on an old outcrop interpreted as an exhalite and discovered in early fieldworks on the property in 2002.

The trench exposes a paragneiss injected with some pegmatites. A metric altered and mineralized zone is present in the north of the trench. It is strongly chloritized and silicified. Sulphides present are pyrite (4%) and traces to 1% arsenopyrite.

No significant gold or base metal value was obtained by channel sampling.

TR2012TR-017 (Figure 22)

The target is an outcrop of mineralized paragneiss that returned a gold value of 0.22 g/t Au in a grab sample (ref:sample 251054, Roy and Boivin, 2011).

Trench exposes a homogenous paragneissic unit with a metric alteration zone composed of chlorite, quartz-garnet and 1% pyrite (traces of arsenopyrite).

No significant gold or base metal value was obtained by channel sampling.

TR2012TR-018 (Figure 23)

Target is an IP axis (PP-47) characterized by high chargeability and low resistivity. It is located at the contact between metasedimentary unit and felsic intrusive (as interpreted on the mag).

Trench is off the anomaly because of swampy terrain. Local geology is a paragneiss with strong partial melting (20%). Paragneiss is slightly altered in chlorite. Traces of disseminated pyrite are present in the matrix and in blebs in association with leucosom. Main gneissosity is oriented N120 with shallow dip (34°).

No significant gold or base metal value was obtained by channel sampling.

TR2012TR-019 (Figure 24)

Target is an outcrop of 2011 that graded 0.889 g/t Au. Grab sample (ref 251005, Roy and Boivin, 2011) is from a metasediment outcrop crosscut by decimetric-scaled pegmatite veins and decimetric-scaled quartz veins. Rock wall of these quartz veins contains a chlorite, garnet and hornblende alteration package.

Trench exposes the metasedimentary unit over 40 meters. It contain from 10 to 20% of leucosome. Disseminated pyrite is observed all along the unit. Grab sample of 2011 is from a 2 meter altered zone composed of chlorite, pyroxene, amphibole quartz and biotite. It contains 3% pyrrhotite.

Main schistosity (Sp) is oriented N115 with a dip of 40°.

No significant gold or base metal value was obtained by channel sampling.

TR2012TR-020 (Figure 25)

The trench is located at 70 meter east of the trench TR2012TR-019. The target is similar to the previous trench and is a mineralized outcrop that returned a gold value of 0.64 g/t Au (ref sample 251023, Roy and Boivin, 2011). Gold is associated with quartz vein with garnet- rich zones and injected in a metasedimentary unit

Trench exposes a wacke that contains traces to 20% of leucosome locally (paragneiss). Retromorphic cordierite porphyroblasts are present. Tremolite is present as well. It is injected with centimetric to millimetric quartz-plagioclase veins (±brucite). To the north, a garnet-rich band contains quartz veins in tension. To the north, a metric siliceous-rich zone is mineralized with 5% PO and could be interpreted as a sulfurized chert. Folds with "Z" pattern are observed. Main schistosity (SP) is oriented N100 with a dip of 48°. With a 90° shifting from the south part to the north, it implies that a the E-W orientation of the grid in this particular zone is wrong.

Unfortunately, no significant gold or base metal value was obtained by channel sampling.

TR2012TR-021 (Figure 26)

Target is the IP axis PP-49 located in margin of a large magnetic and circular anomaly caused by a felsic intrusion.

Trench exposes a paragneiss with 15% leucosome inplying an increase of the partial melting in the margin of the circular intrusive. The unit is locally chloritized. Rare traces of pyrite are present: we found it disseminated in the matrix, in blebs or stringers in the main schistosity. Leucosome contain traces of a blue mineral interpreted as beryl (or maybe apatite?).

Unfortunately, no significant gold or base metal value was obtained by channel sampling.

TR2012TR-022 (Figure 27)

Virginia Mines Inc.

Target is the IP axis PP-49 characterized by a high chargeability and a low resistivity.

Trench exposes an intrusive felsic unit. Gneissic texture is locally developed. Traces to 3% pyrite and pyrrhotite in blebs in the tonalite are observed. Chlorite-carbonates veinlets contain blebs of pyrite as well. Main schistosity is oriented N211 with a dip of 45°.

No significant gold or base metal value was obtained by channel sampling.

TR202TR-023 (Figure 28)

Target is IP axis (PP-49) and a conductive outcrop with the beep map.

Local geology is heterogeneous. Main unit is a paragneiss (could be a orthogneiss with a tonalitic composition as well) strongly foliated but the gneissosity is weakly developed.

Two rusty and strongly silicified mineralized zones are observed. Disseminated pyrrhotite and blebs is observed at 3-5%. A third mineralized zone is associated with a decimetric quartz vein where wall rock contains 3% of pyrite in coarse blebs. We observe a feldspar-porphyry dyke in the center of the trench. Unit is injected by anastomosed quartz veins and by carbonates veinlet. No significant gold or base metal value was obtained by channel sampling.

TR2012TR-024 (Figure 29)

Target is an outcrop of 2011 that returned 0.11 g/t Au in a grab sample. There is no association with an IP anomaly.

Trench exposes a metasedimentary unit (wacke) with a compositional banding. Five metric altered and mineralized zones are observed. Alteration is composed of amphibole, garnet, séricite, epidote and quartz. Pyrite is present form 0.5 to 3%.

No significant gold or base metal value was obtained by channel sampling.

TR2012TR-025 (Figure 30)

Target is an outcrop of metasedimentary unit discovered in 2012 and mineralized in arsenopyrite (TR2012JLD-018).

This small hand-made trench exposes a homogenous paragneiss. At north, it becomes a biotitechlorite schist containing disseminated 2% pyrite and pyrrhotite in the matrix, stringer de pyrite in traces and a quartz vein with 5% arsenopyrite. The orientation on the main schistosity (Sp) is N125with a dip of 50°.

Grab samples 270907 and 270908 results are respectively 0.36 and 0.31 g/t Au. Best channel result -is 0.33 g/t Au over 5.5m including 0.93g/t Au over 1m.

ITEM 10: DRILLING

This section is not applicable to this report

ITEM 11: SAMPLE PREPARATION, ANLAYSES AND SECURITY

11.1 Rock Samples

Rock samples collected during the 2012 reconnaissance program were obtained to determine the elemental concentrations in a quantitative way by ALS Chemex, Val d'Or. These included both mineralized and barren rocks, the latter of which were selected for lithological controls. Samples were collected at the bedrock surface by either a hammer or a saw at sub-surface. All the collected samples were located with the use of a GPS instrument.

For surface sampling, most of the weathered crust was removed before samples were bagged. All samples were placed in individual bags with their appropriate tag number and the bags were sealed with fiberglass tape. Individual bagged samples were then placed in shipping bags. The authors are not aware of any sampling or recovery factors that would impact the reliability of the samples.

11.2 Sample security, storage and shipment

Samples were collected and processed by the personnel contracted by Virginia. They were immediately placed in appropriates sample bags, tagged and recorded with unique sample numbers. Rocks sealed samples were placed in shipping bags, which in turn were sealed with plastic tie straps or fiberglass tape. Bags remained sealed until the ALS Chemex Val-d'Or personnel opened them.

All samples were initially stored at the campsite. Samples were not secured in locked facilities, this precaution deemed unnecessary due to the remote location of the camp. Rocks samples were then loaded into a pickup truck for transport to Val-d'Or where Virginia personnel delivered them to the ALS Chemex sample preparation facility.

11.3 Sample preparation and assay procedures

11.3.1 Rock samples

After logging in, the samples were crushed in their entirety at the ALS Chemex preparation laboratory in Val-d'Or to >70% passing 2 mm (ALS Chemex Procedure CRU-31). A 200- to 250-g sub-sample was obtained after splitting the finer material (<2 mm). The split portion derived from the crushing process was pulverized using a ring mill to >85% passing 75 μ m (200 mesh - ALS Chemex Procedure PUL-31). From each such pulp, a 100-g sub-sample was

obtained from another splitting and shipped to the ALS Chemex laboratory for assay. The remainder of the pulp (nominally 100 to 150 g) and the rejects are held at the processing lab for future reference. The AU + SCAN analytical packages have been used.

The Au + SCAN package includes Au, Ag, Al, As, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Sc, Sr, Ti, V, W, and Zn. All elements, except Au, were determined by the ME-ICP41 Procedure. Au was determined by the AA23 Procedure. For the sample with the value higher than 10 g/t Au, the analysis was repeated with the GRA21 Procedure.

ITEM 12: DATA VERIFICATION

No rigorous data verifications procedures were done for the prospecting program. For the channel sampling, a quality control procedure in order to validate laboratory results. One standard (certified reference materiel), one blank and one reject duplicate were included in each batch of twenty (20) samples. Three types of standards were used to verify gold results. Certified reference materials are identified as SI54, Si64 and SK62 and were provided by Rocklabs.

With less than 20 samples by standard type, it can be tricky to obtain accurate statistics calculation. Using statistics calculation of Rocklabs, four (4) standards results on 32 exceed three times the standard deviation. Although, we consider that results are meeting the standard quality. One exception is for standard sample no 273425 (certificate VO121872) that exceeds more than 20 times the standard deviation. This failure does not match with duplicate or blank failure. This report contains three anomalous gold results as well (273422 to 273424 : 1.62, 3.74 and 1.22 g/t Au). Expecting a contamination, we asked for reanalysis on the reject sample. Results confirm a contamination and reanalysis returned gold results below the detection limit.

Blank material consists of crushed (3/4 inch) calcite and silica commonly referred to as "marble aggregate" in the landscaping industry in 30-kg bags who were purchased at a local retailer in Rouyn-Noranda. We have no suspicion of contamination, except for the certificate CO121872.

Twenty-nine duplicates from reject samples were analysed, It revealed one failure. Sample 272720 failed to reproduced similar gold value on sample 272719 (difference of 0.71 g/t Au, difference of more than 45%). That failure does not match with any other failure or standard and blank in the same batch.

Regarding all these results, we consider that ALS-Chemex laboratory is answering quality controls and results are accurate.

ITEM 13: MINERAL PROCESSING AND METALLURGICAL TESTING

- ITEM 14: MINERAL RESOURCE ESTIMATES
- **ITEM 15: ADJACENT PROPERTIES**

The project "Galinée" owned by Midland Exploration is located to the West of the Trieste Property. A few gold showings that returned values up to 5.22 g/t Au from grab samples were obtained from metasedimentary rocks on the Galinée project (Midland Exploration website).

ITEM 16: OTHER RELEVANT DATA

This section is not applicable to this report.

ITEM 17: INTERPRETATION AND CONCLUSIONS

17.1 South Grid

In 2011, new showings and gold bearing boulders were discovered by prospecting in the south part of Trieste property. Despite the extensive IP survey and trenching program, the 2012 campaign failed to discover new significant showings on the Trieste property.

Follow-up on 2008 and 2009 gold showings on the NW grid exposed spectacular breccia and intense metasomatism on trench TR2012TR-001 and 03 but returned no significant gold values. Trenching on SLPN showing did not extend the base metal mineralized zone that originally graded 2.65% Zn; 0.16% Pb; 0.08% Cu; 19.3 g/t Ag and 0.10 g/t Au over 3.00 meters.

On the South Grid, thick overburden has limited prospecting and investigation by trenching of geophysical targets (IP) and most of them remain largely unexplained. In the center of the grid, trenches on 2011 outcrops of metasedimentary unit with multiple quartz veins and garnet- rich zones show that mineralized zones are local with no lateral extension. Fluid circulation process involved in the formation process of these veins cab be related to the presence of a circular tonalitc intrusion, as seen on the HD magnetic survey. Despite the absence of high gold values and significant showings, the hand-made trench TR2012TR-25 confirms the anomalous character of the metasedimentary unit with a channel sampling that returned 0.33 g/t Au over 5.5m

In the southern part of the South grid, most of the IP axis remain untested due to the thick overburden Over the years, discovery of multiple mineralized boulders in the area confirms the high potential of these geophysical targets for gold bearing mineralization. More than 10 boulders are spread over 6km on a trend oriented N060 from Linda Block to the NE of the South grid. Gold values vary form 0.6 g/t Au to 20.6 g/t. The Linda block has a calco-silicated composition (mostly quartz-clinopyroxene) but other boulders are interpreted as silicate-rich iron formations.

ITEM 18: RECOMMENDATIONS

Considering the presence of numerous interesting IP axis, multiple gold-bearing mineralized boulders and thick overburden all over the property, a diamond drilling program is the only way to verify all geophysics targets on the property.

To optimized targeting, a review on the till survey and quaternary study of the area could be useful regarding the abundance of mineralized boulders all over the property.

ITEM 19: REFERENCES

Beesley, T.J., 1992, Report on Winter 1992 diamond drilling program, Eastmain Project, Harbourg Lake, SOQUEM Option, Northern Quebec. Kingswood exploration 1985 Ltd.

Berger, J., 1999, Rapport final sur la détection des chapeaux de fer à l'aide d'une image Landsat TM pour les feuillets 23E ouest et 33H est, projet Minto; GM 58324; 8 p.

Cannuli, M., 1975, Rapport des levés géochimiques d'eau et de sédiments de lac, territoire de la Baie James, Bloc "B", GM 34036, 38 p.

Chapdelaine, M., 1999, Projet Caniapiscau, Rapport des travaux de reconnaissance automne 1998. Internal Report, Mines d'Or Virginia, 13 pages.

Charbonneau, R., 2009, Systematic Till Survey 2009, Trieste Property, James Bay, Québec, Inlandsis Consultant, 48 pages.

Choinière, J. and Leduc, M., 1996, Analyse pour l'arsenic, l'or, l'antimoine et le tungstène (SNRC 23E). Ministère des Ressources naturelles, Québec, MB 96-29.

David, J., et Parent, M., 1997, Géochronologie U-Pb du Projet Moyen-Nord. Ministère des Ressources Naturelles, Québec; rapport interne.

Desbiens, H., 1995, Rapport de la prospection et de la cartographie géologique de la propriété Lac Trieste, Baie-James, Québec (33H/ 07-08). Ministère des Ressources naturelles, Québec, GM 53578, 25 pages.

Duffel, S. and Roach, R.A., 1959, Mount Wright, Québec-Newfoundland. Geological Survey of Canada, Map 6-1959.

Eade, K.E., 1966, Fort George River and Kaniapiskau River (west half) Map-Areas, New Quebec. Geological Survey of Canada, Memoir 354, 23 pages.

Francoeur, G. and Chapdelaine, M., 1995, Technical Report and Recommendations, Eastmain River Project (40349). SOQUEM, 17 pages.

Gauthier, M., 1996, Géologie de la région du Lac Sauvolles (SNRC 33H et 23E ouest); MB 96-27; carte 1:250 000.

Gauthier, M., Larocque, M., et Chartrand, F., 1997, Cadre géologique, style et répartition des minéralisations métalliques de la Grande Rivière, territoire de la Baie James; MB 97-30; 69 p.

Grenier, L., Savard, M., Archer, P., 2008, Technical Report and Recommendations, Reconnaissance Program, Trieste Project, 44 p.

Hocq, M., 1985, Géologie de la région des lacs Campan et Cadieu, Territoire-du-Nouveau-Québec. Ministère de l'Énergie et des Ressources, Québec, ET 83-05, 178 pages. Lamothe, D., Leclair, A.D. and Choinière, J., 1998, Géologie de la région du lac Vallard (23C). Ministère des Ressources naturelles, Québec, RG 98-13, 31 pages.

Leclair, A.d., Lamothe, D., Choinière, J. and Parent, M., 1998, Géologie de la région du lac Bermen (23F et 23G). Ministère des Ressources naturelles, Québec, RG 97-11 Ross, M., 1998, Géochimie du till et comptage de grain d'or sur la propriété Escale, été 1998, Ressources Sirios inc.; GM 56127; 37 p.

Roy, I, Boivin, J.F. 2011. Technical report and recommendations, reconnaissance program, Trieste project, 99 pages, 5 Cartes.

St-Hilaire, C. 2011. Heliborne high resolution aeromagnetic survey, Escale, Nichicun Trieste and Ashuanipi properties, 28 pages. 8 cartes.

Savard, M., 2000, Rapport technique sur le projet Reccey 55 Nord, Automne 2000, Mines d'Or Virginia, inc., 9 p.

SDBJ, 1978, Cartes géochimiques des sédiments de lacs de la région de la Baies-James. Ministère des Ressources naturelles, Québec, GM-34039.

Sharma, K.N.M., 1978, Région de la Grande Rivière, Nouveau-Québec (projet 1977); Ministère des Richesses naturelles, Québec; DPV 558, 32 p.

Tshimbalanga, S., 2008, Levés de polarisation provoquée, d'électromagnétisme EMH et de magnétométrie, propriété Trieste, région de la Baie-James, Québec, 19 pages.

Tschimbalanga, S.2012. Levé de polarisation provoquée, Propriété Trieste, Lac Orillat, Municipalité de Baie-James, Québec, SNRC 33H/01, 17 pp..

Villeneuve, P.-A., 1999, Rapport des travaux du projet Caniapiscau, 1999, Mines d'Or Virginia, 22 p.

Villeneuve, P.-A., 2000, Rapport des travaux 2000, projet Caniapiscau. Internal Report, Mines d'Or Virginia, 27 pages.

ITEM 20: DATE AND SIGNATURES PAGE

CERTIFICATE OF QUALIFICATIONS

I, Isabelle Roy, do hereby certify that:

- I am presently employed as a Project Geologist with Virginia Mines Inc., 300, rue St-Paul, Suite 200, Québec (Québec), G1K 7R1..
- I received a B.Sc. in Geology in 1993 from Laval University (Québec).
- I have been working as a geologist in mineral exploration since 1994.
- I am a professional geologist presently registered to the board of the Ordre des géologues du Québec, permit number 535.
- I am a qualified person with respect to the Trieste project in accordance with section 5.1 of the national instrument 43-101.
- In collaboration with the other author, I have worked on the database and maps of this report utilizing proprietary exploration data generated by Virginia Mines Inc. and information from various authors and sources as summarized in the reference section of this report.
- I am not aware of any missing information or change, which would have caused the present report to be misleading.
- I do not fulfil the requirements set out in section 5.3 of the National Instrument 43-101 for an «independent qualified person» relative to the issuer being a direct employee of Virginia Mines Inc.
- I have been involved in the Trieste Project since June 2011.
- I have read and used the National Instrument 43-101 and the Form 43-101A1 to make the present report in accordance with their specifications and terminology.

Dated in Québec, Qc, this 8th day of January 2013.

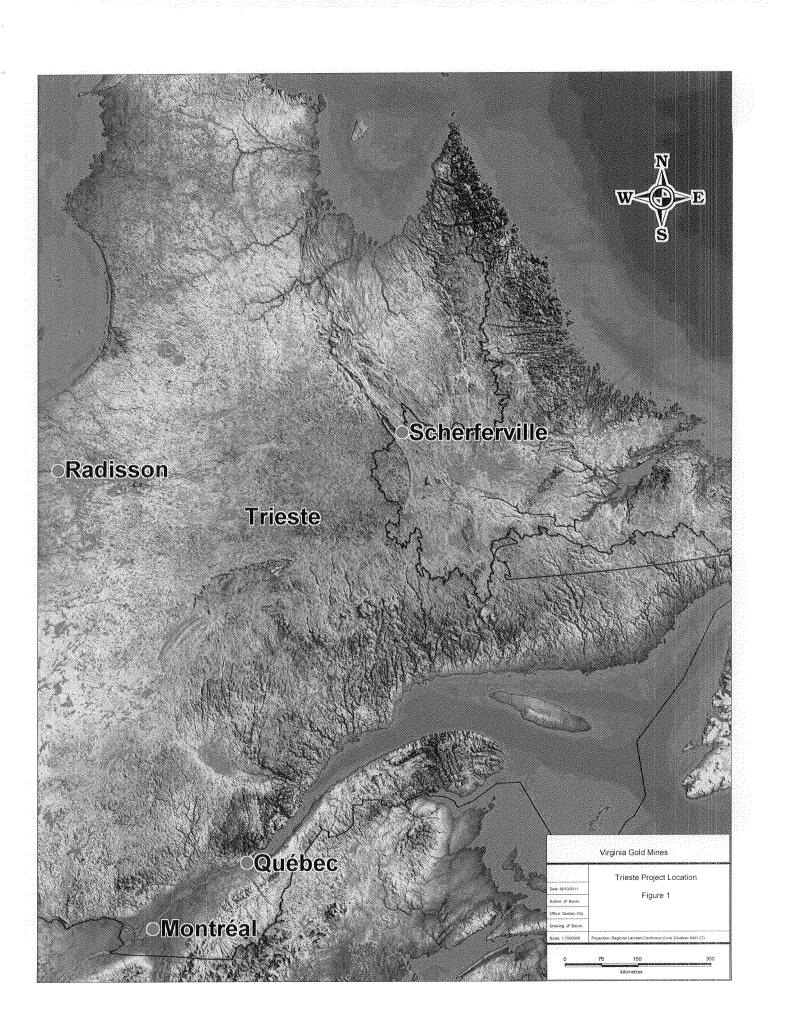
Isabelle Roy, B.Sc., P. Géo.

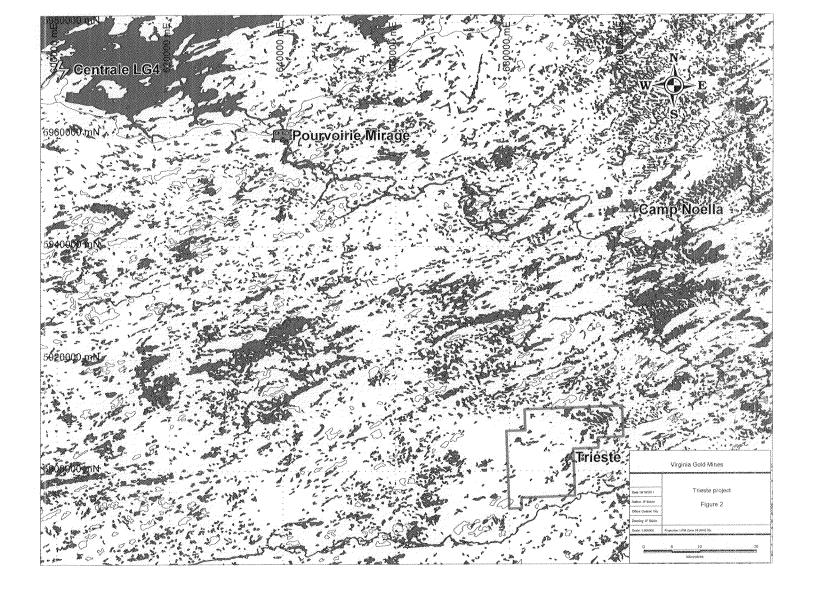
CERTIFICATE OF QUALIFICATIONS

- I, Rose Anne Bouchard do hereby certify that:
 - I am presently employed as Trainee Geological Engineer with Virginia Mines Inc., 300, rue St-Paul, Suite 200, Québec (Québec), G1K 7R1..
 - I received a B.Sc. in Geology in 2012 from University du Québec à Chicoutimi (Québec).
 - I have been working as trainee geological engineer since 2012.
 - I am a professional trainee engineer presently registered to the board of the Ordre des ingénieurs du Québec, permit number 5020517.
 - I am not a qualified person with respect to the Trieste project in accordance with section 5.1 of the national instrument 43-101.
 - In collaboration with the other author, I have worked on the database and maps of this report utilizing proprietary exploration data generated by Virginia Mines Inc. and information from various authors and sources as summarized in the reference section of this report.
 - I am not aware of any missing information or change, which would have caused the present report to be misleading.
 - I do not fulfil the requirements set out in section 5.3 of the National Instrument 43-101 for an «independent qualified person» relative to the issuer being a direct employee of Virginia Mines Inc.
 - I have been involved in the Trieste Project since June 2011.

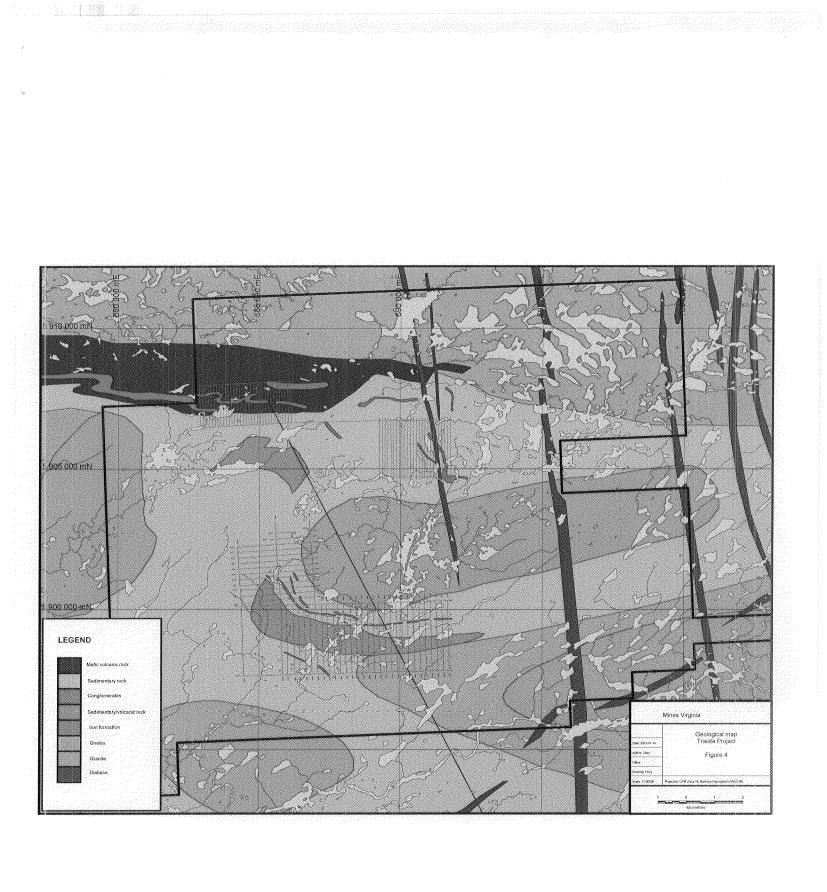
÷

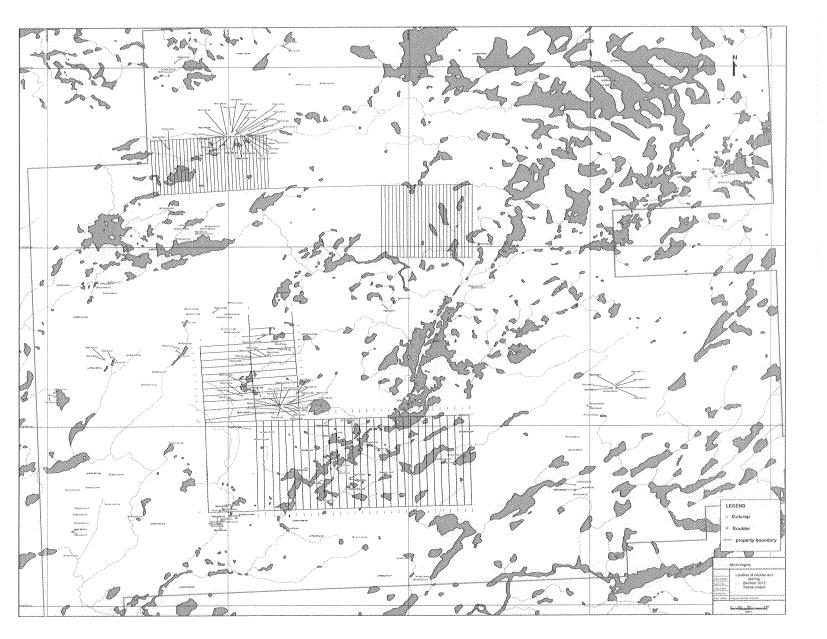
- I have read and used the National Instrument 43-101 and the Form 43-101A1 to make the present report in accordance with their specifications and terminology.

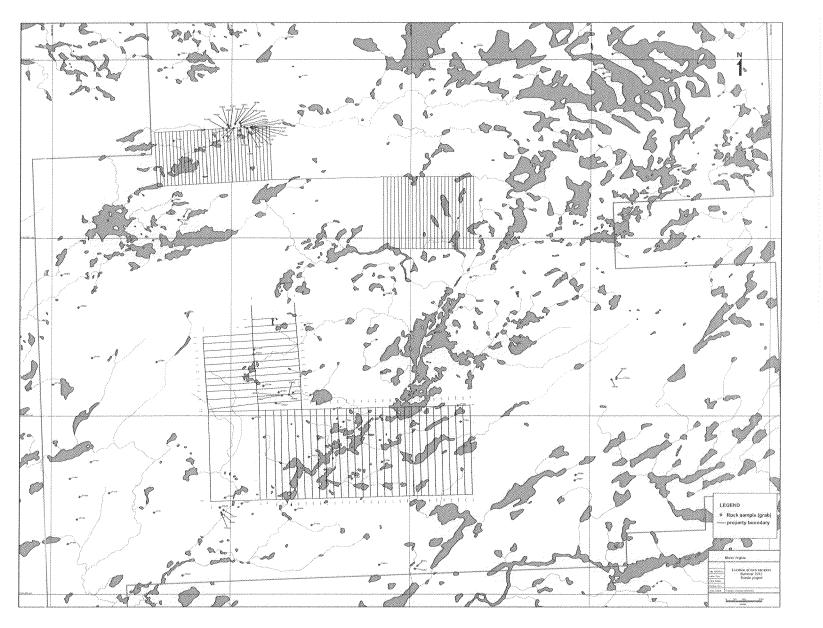

Dated in Québec, Qc, this 13th day of December 2012.

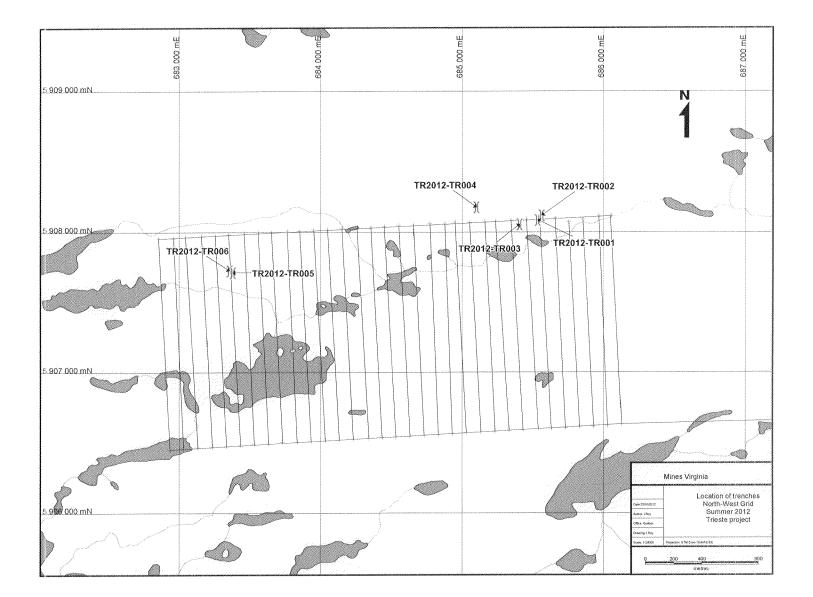

Rose anno Bouchard.

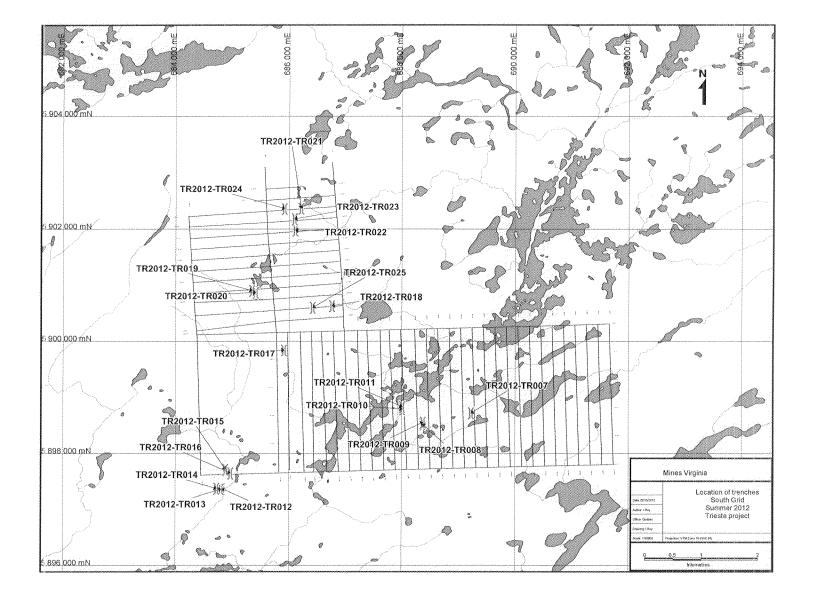
Rose Anne Bouchard, B.Sc Ing in training

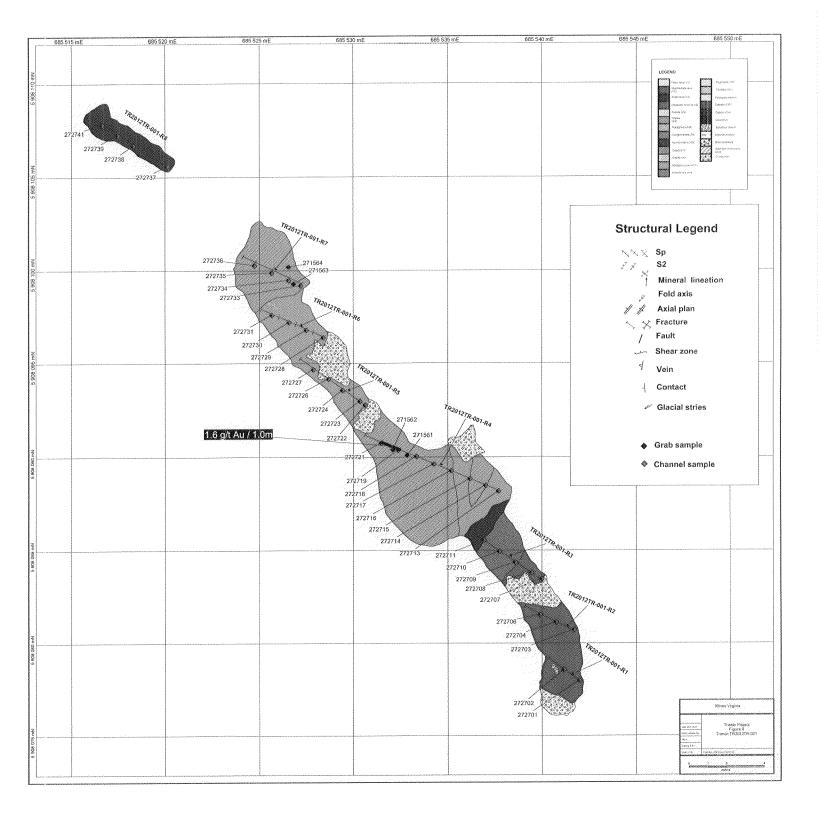

-

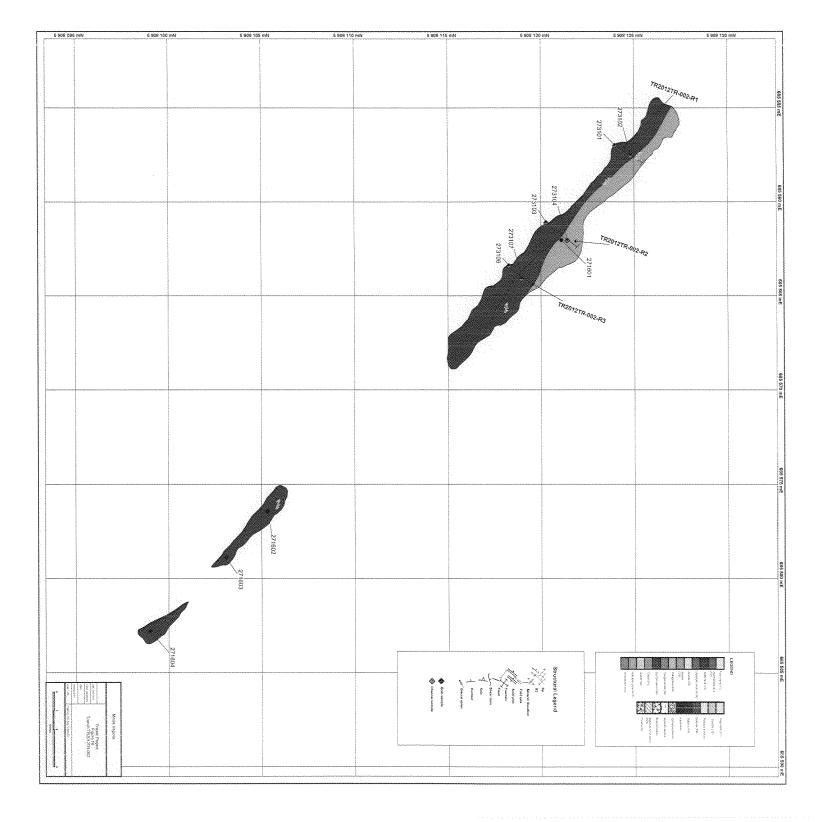

ITEM 21: FIGURES AND MAPS

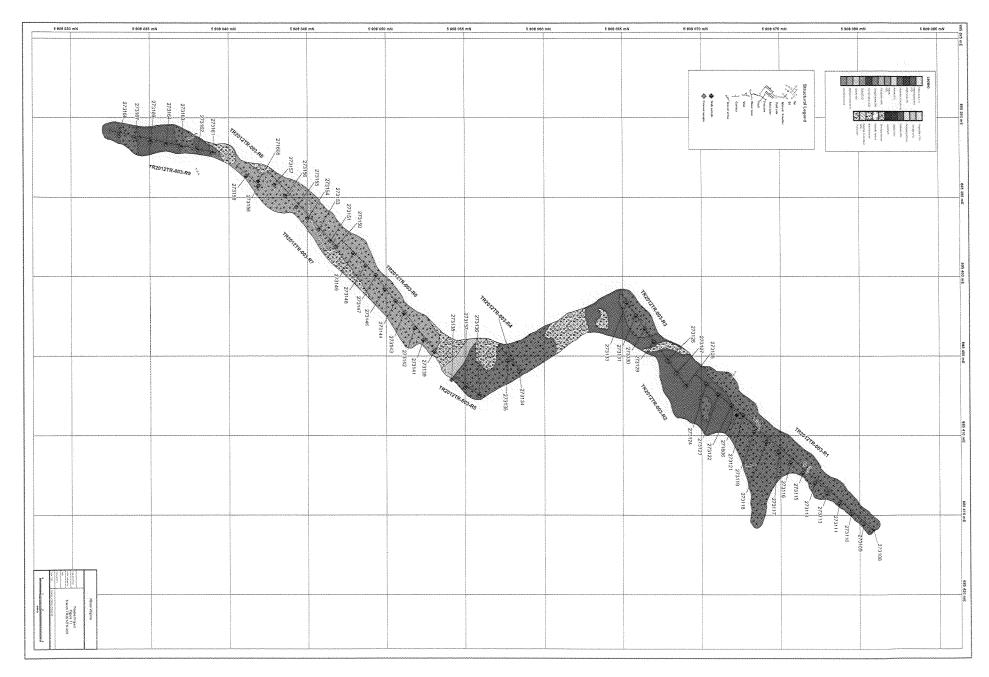




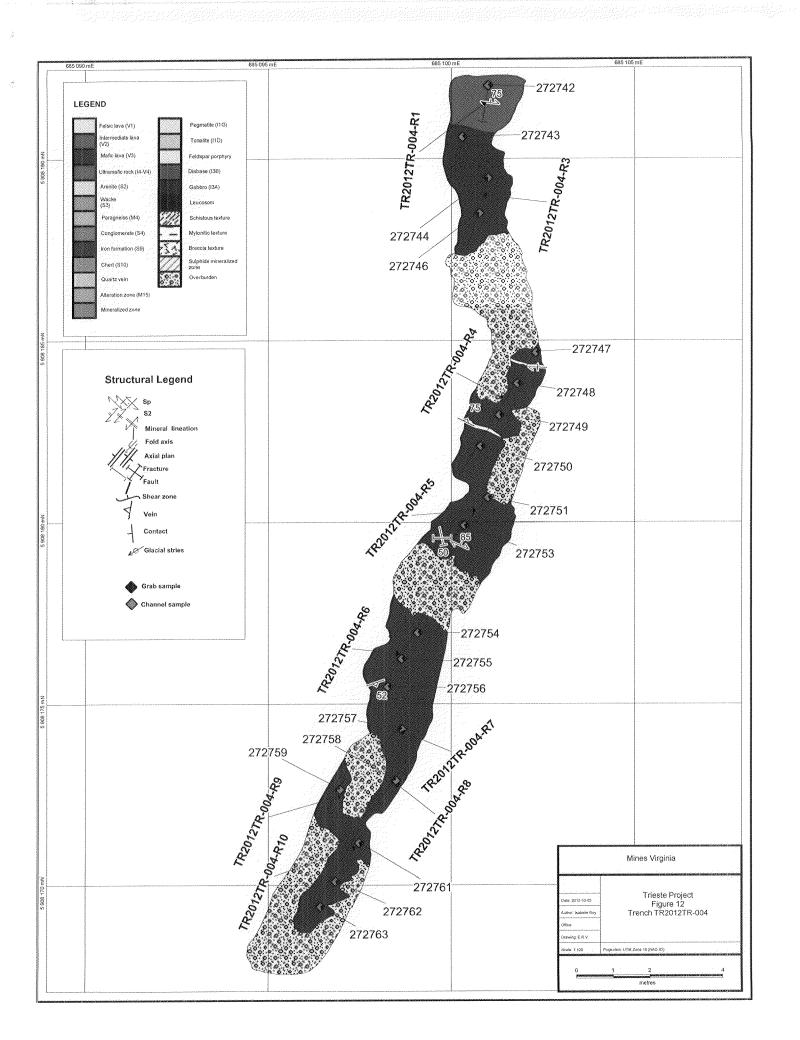

mit wer	, V	1	A R	2	~	El	R	and the second		ala al a	ALL STREET	į	*	2	sard. S	- ** **	. 6	ę	8	Second S	}	Â.	P Acar					w Solo	_	у А	De :	ä,
25037 5		Am	्र ध्यः सारमंगित	2296.34	100		2255	2265	2255346	12	N	2286345			3		2286437	2296438	22664.39	2296440	1778622	2266442	2266443	2256444		7599472 7599472	2256448 2008447	ja L		17 - C	5 6	-
A A A A A A A A A A A A A A A A A A A	2266337 2	2266338	2296139		342 21	343 216	344 274	345 214	2	NRA	48 2145	22.2		214	2445	2265	AC 7994C	1206		22564.24	2285425	2266426	2266427	2266428	2256429	000000	2286431		Å			
	2145057		45059	45060 2	15062 21 Acres 21	3083 2	45064 21	45085 21	45066 21	2067 210	068 234	5069 214	214		-	2755	22/56	1		1000	2	23964.12	C1 60923	2250414	2266415	2266416	2266417	1	X.S.	n.		
and a start	2145040 2145039	2145041	2145042	145043	2145045 2145044	2145049	2145047	2145048	2145049 2	2145050 2	2145051 21	5052 21			-+		5406 226		220039		2260	2 2266398	2206395	2236	226640	Z25645	2255403	Ľ,			Store B	
	28919	61884	61885	61886	61887	61889	51891	61892	2145932	2145033	45034	2145035 2			2145038 20	2266391 2266	5382 222			225	07 4.20636.		2256		2295387	2 22663	236		Quer	and the second		
	91271	61873	51874	61875	61876	61979	61880	5:55	2085753	2085754	2085755	2003756		2085758	2085753	377	- (-	2260379 226	2296380	5351 22	ZZ 2865	384 228	395 226		87 2266373	2206374		2000376				
223822 223822 223822 223822 23382 23382 2	6186	6186Z	61863	81364	61969	51668	61969	61870	2005746	2089747	2085748	2085749	2085750	2085751	2085752	2266353	35354	6365	86536	56357 2	86368	and the	2265311	2769922	enti	80 Au		a f		•	or state W	ai l
2000 100 100 100 100 100 100 100 100 100		51 22	61853	8.8	6180	61857	61258	61859	2085739	2085740	208574	2085742	2085743	2085744	2085745	2265357	2265358	2266359	2256360	2266361	20000	le.	l	MIP .			Š:	AT INST		a for a second s	-	
	01 020	52 61842 51 61841	3 01843	61844		51845	51848	61849	2085732	2085733	2065734	2055/35	2085736	2085737	2085738	2266351	2206352	2286353	2266354	2266355	2206356	a. 6	, 6 00		neiscel	÷.	2		B	A	5. z.)	
	61840 21					NN		-	2 2145013	3 21450	2714502	2345022	2145023	2250202	2050323	2050324	205025	2050326	2050327	2050322	2050329	2046725	2046727	2046726	2045725	2946730	2046731	049732			Star Star	2
	2145002	2145013 4	5012 2	2145013 21	5014 2144		-		2145002	20 2145003	21-214500-	2 2145005	3 2145006	2 2050314	2050315	2050316	2050317	2050318	2050319	-205032	2050321		2046718	2046720	2046721	2046722	2046723	2046724	A	Den -	Â	
	266991	44993	4995	2144995 2		2144996 20					204 - 205	285	06 2050305	14 2050	2050	2050	2050	8 2050310	2050313	2050312	2050313	204670	01299902	2046712	2046713	2046714	2046715	2046746	S.	Po	15	19 19 19
	2054509	2054510	054542	2054513	2054514	ΰ. 	2064516				2003 - 20	2304 200	1200	306 205	307 2054502	308 2054503	2054504	10 2054505	2054500	2 20546	3 2054508		204	2049704	2046705	204670	2049707	2046708	02	1005	· ¥	
	2054436	2054467	2054488	2054490	2054491	案		464	105	len (54296	2054499	2054500	2054501 20	1 3	503 202	504 205	205 205	100	07 20%	20%	2045	2048	20456	0	20465	2046699	C.SFCZ	, °	\$ <u></u>	8	
	2054463	2054454	2054465	2054457	2054468	2054469	2054470	2054471	2054472	2054473					4479 00	44.00 20	4481 20	4482 205	1483 20	484 205	1485 235	393 254	394 2040	96 2040 96 2046		20402 12 20402 13		204960	2046778	2040700	2040752	
	205444	205441	2054442	2054444	2054445	2054446	2054447	2054448	2054449	2054450	Doceant	Company Company	454		4425	54457		4459	2460) 25	4461 20	4462 20	5685 20	62 688	593 597 204		90 AM-000		22 2049684	An a	1. S	n boge	1
		2054421	2054422	2054423	2054425	2054426	2054427	2054428	2054429	2054430		2054431		12 PAGE			1435	2054436		2054438	2054439 2	2040677 204	2040678 22	2046679 20	2		1 <u>8</u> >		A	3E		-
	20 2054397	2054398	2054	3 205440	2054	208440	20544.04	20544-0	2054406	2054407	2054408	2054403	2054410	2054411	CINTRE		2054415	2054416	2054417	2054418	054419	100000	2046670	2048671	2040672	24	Ŕ	E C	10			202
			399 2054375	00 2054377		13 2054380	4 2004381	5 2054382	2054383	- former	2054385	2054.30	2054387	2054388	2054389	2054390	2054392	2054,58,5	2024204		2054396	[No.	<u>ze</u>	2			M	nes Virgin	la	Ang a	
	2054374	2054375	8764	38	122	8	<u></u>	8	<u> </u>	8 8	and the	2 "	<u>0010</u> 9		- (j) P-1	1	Ŗ	e la come de la come de La come de la come de	\$.	R	J.	5	<u>)</u>		0	Dulia, 2013		Lò	cation of c rieste prop	laims erty	
		y Y		Ó		ana di seconda	-		6	Ø			-il		oid bags	and the second s		5	e.		60	4				0	Autoor; iroy Office: Enswing:			Figure 3	; 	
	a f	3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	44 - Au	<u>_</u>	3	Å	F	None Income	Sala	P	dina No	in the second			én		^ م	×	*		44		8	R	5	Boste: 1:50	00c Pr	section. UTM Zon	*****		
and the second	t.	2	1	N	5.12	Po	4			Ň	~	ß	ai nemono nivie	<u>.</u> 0,			. 7 B) M							1					675379.07 01	600 1 000 Mires]

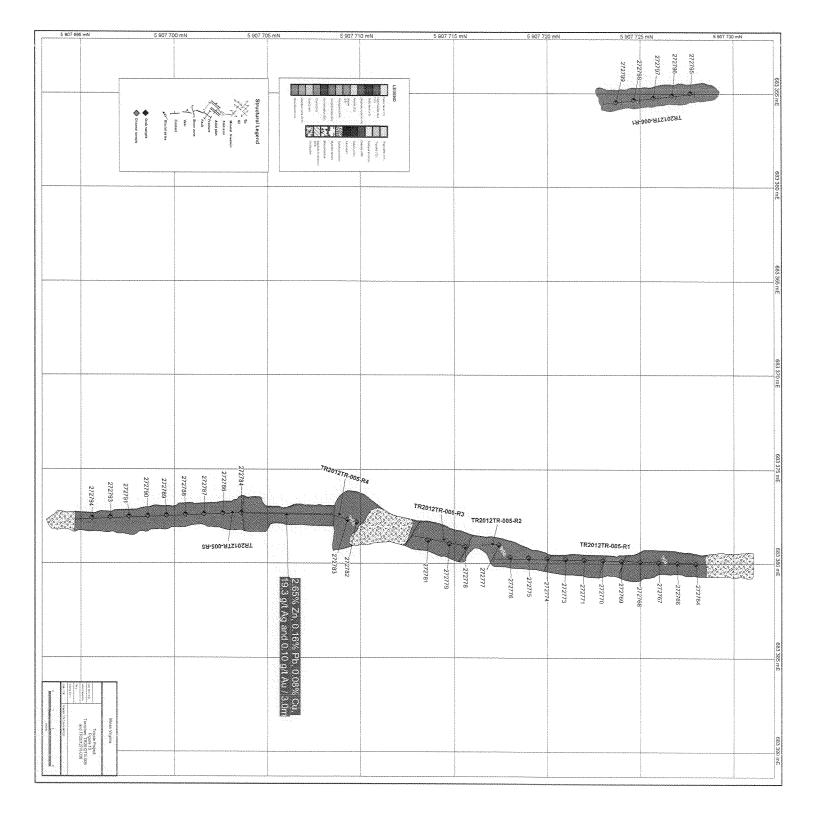


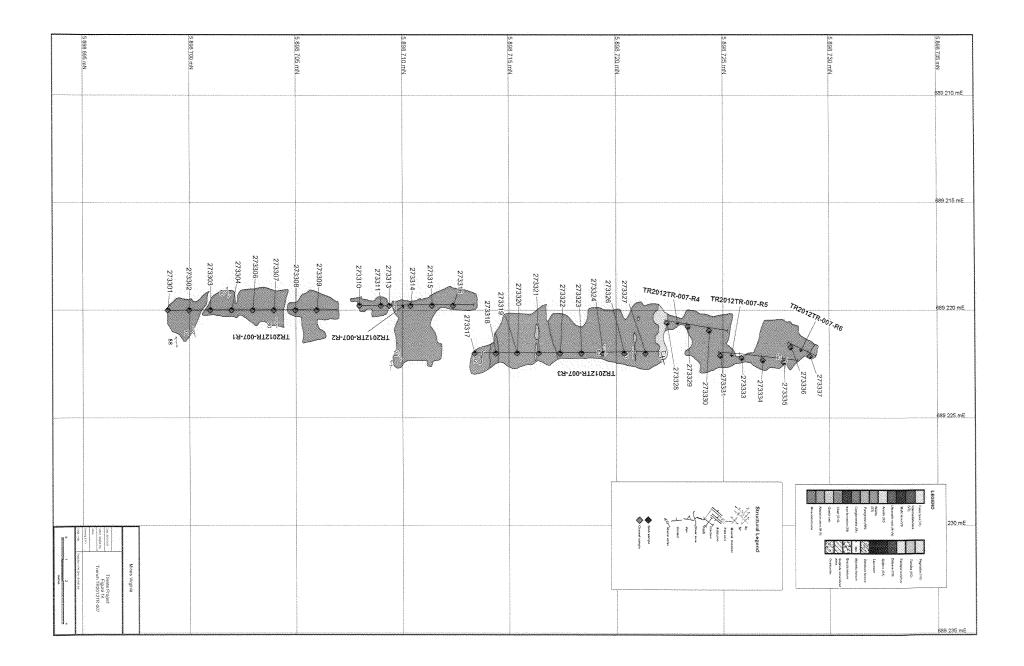


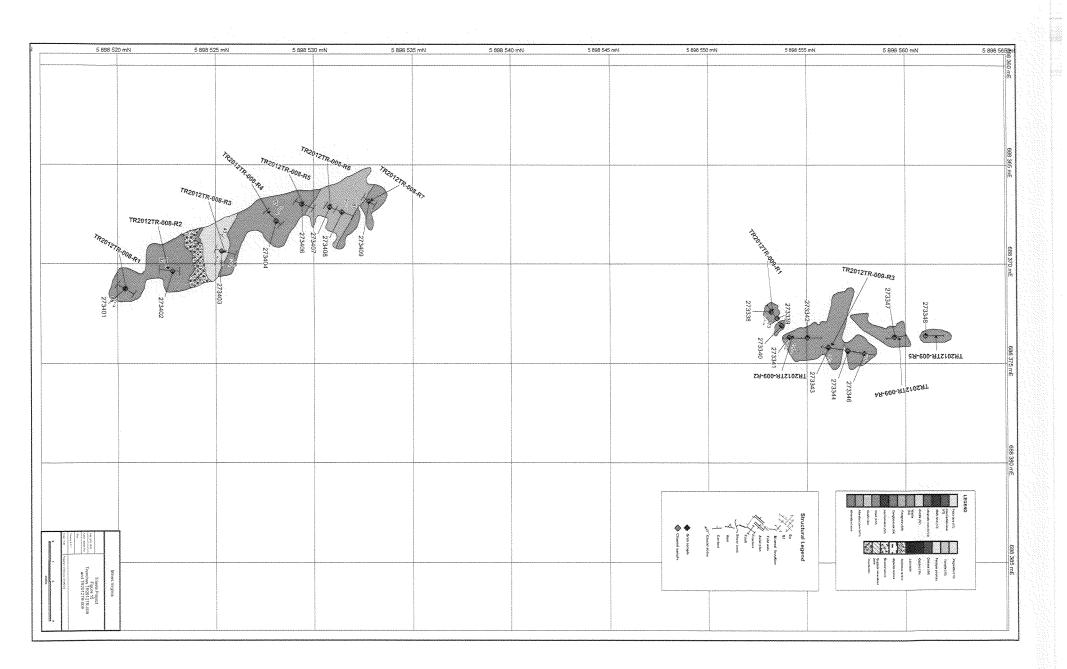


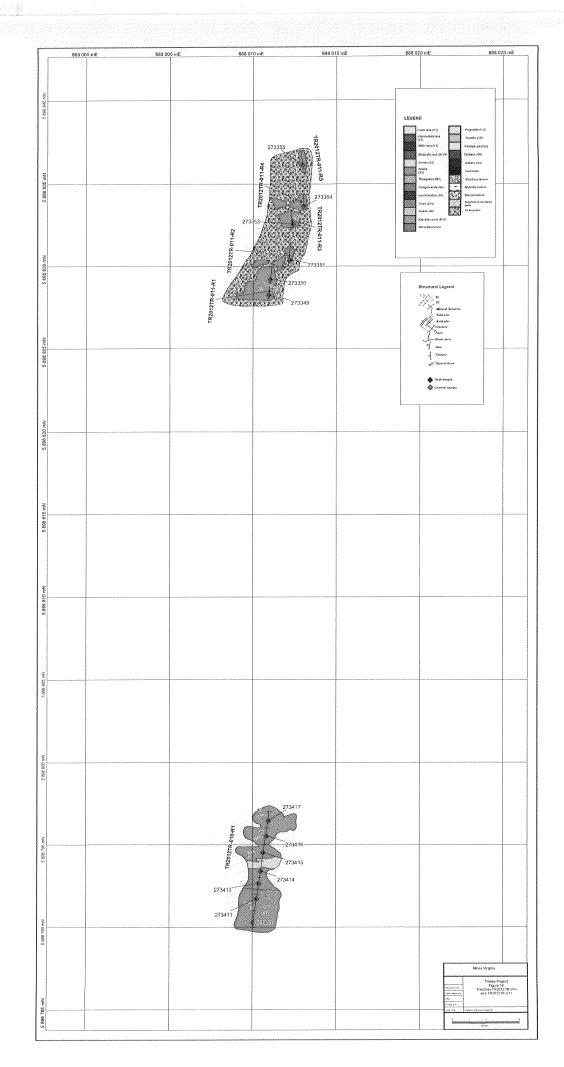
Automotoren (HIL)

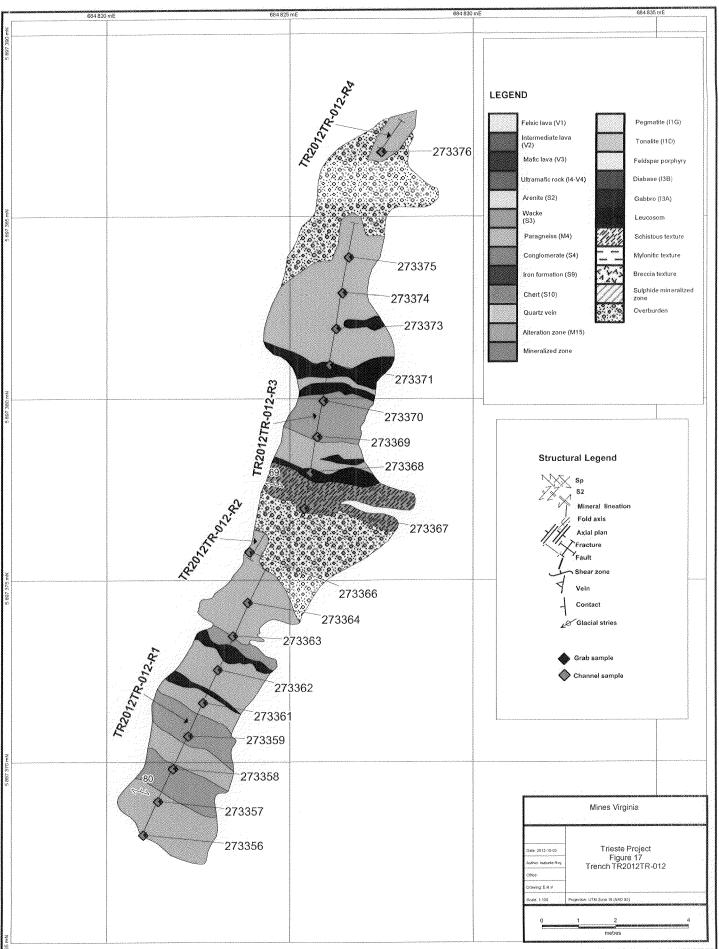


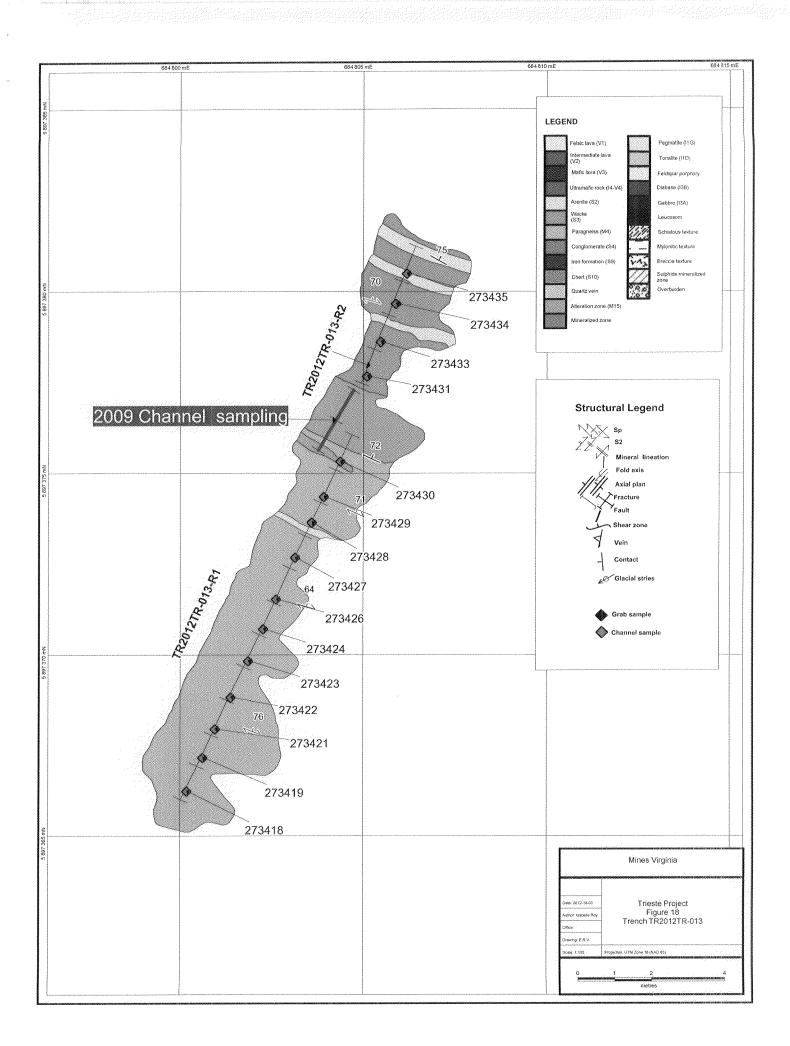


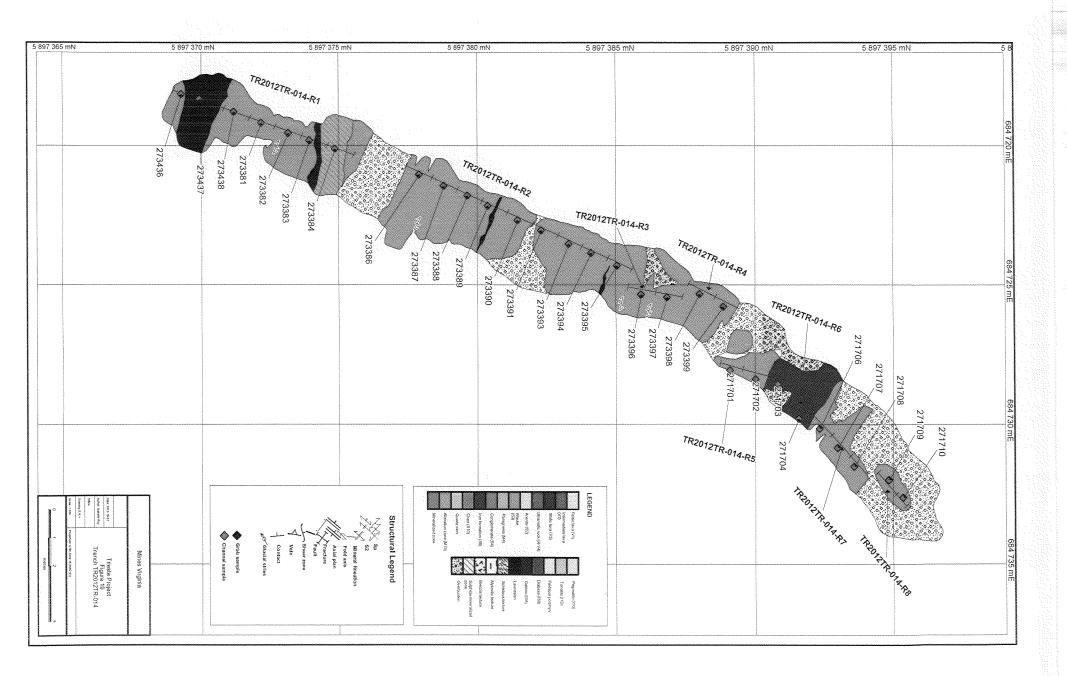


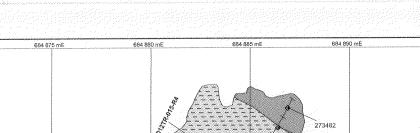


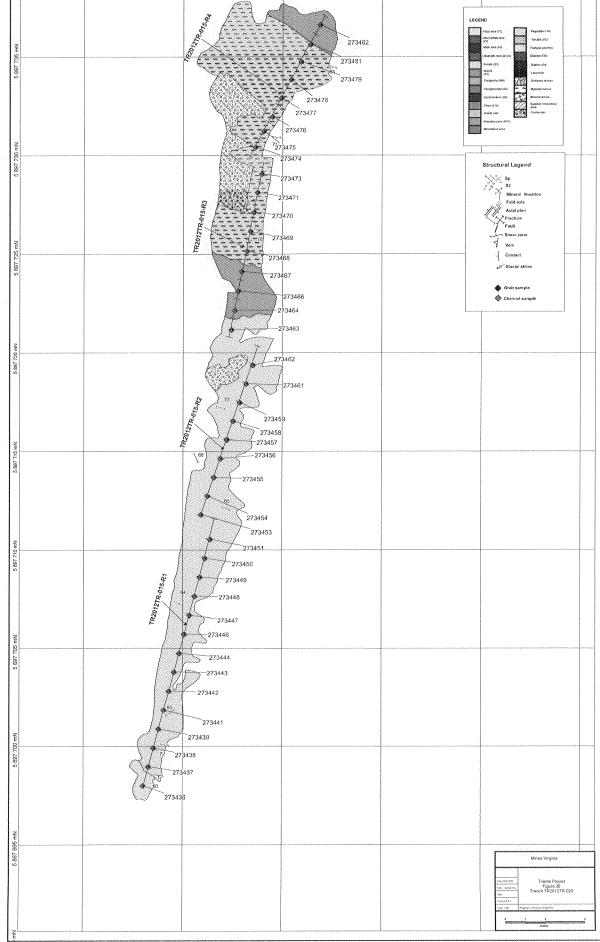


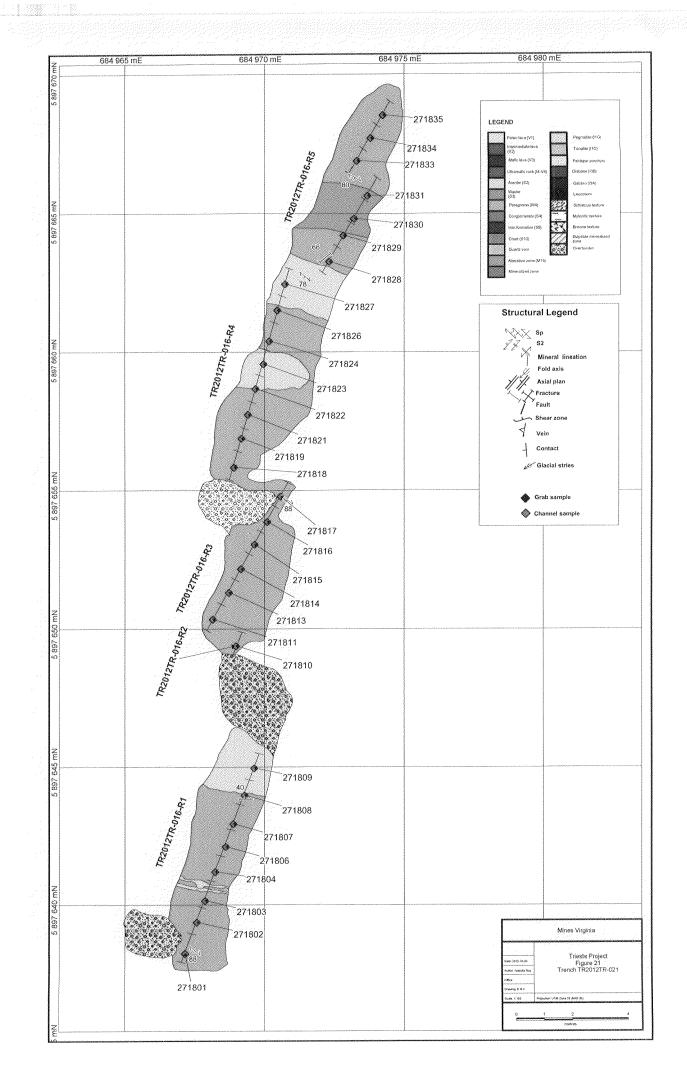


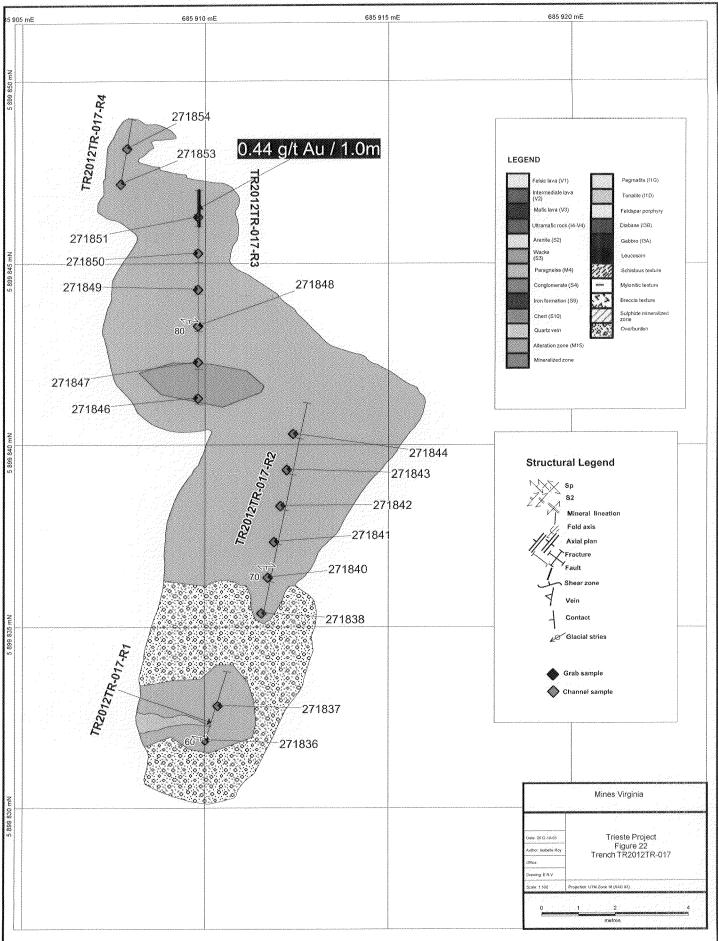


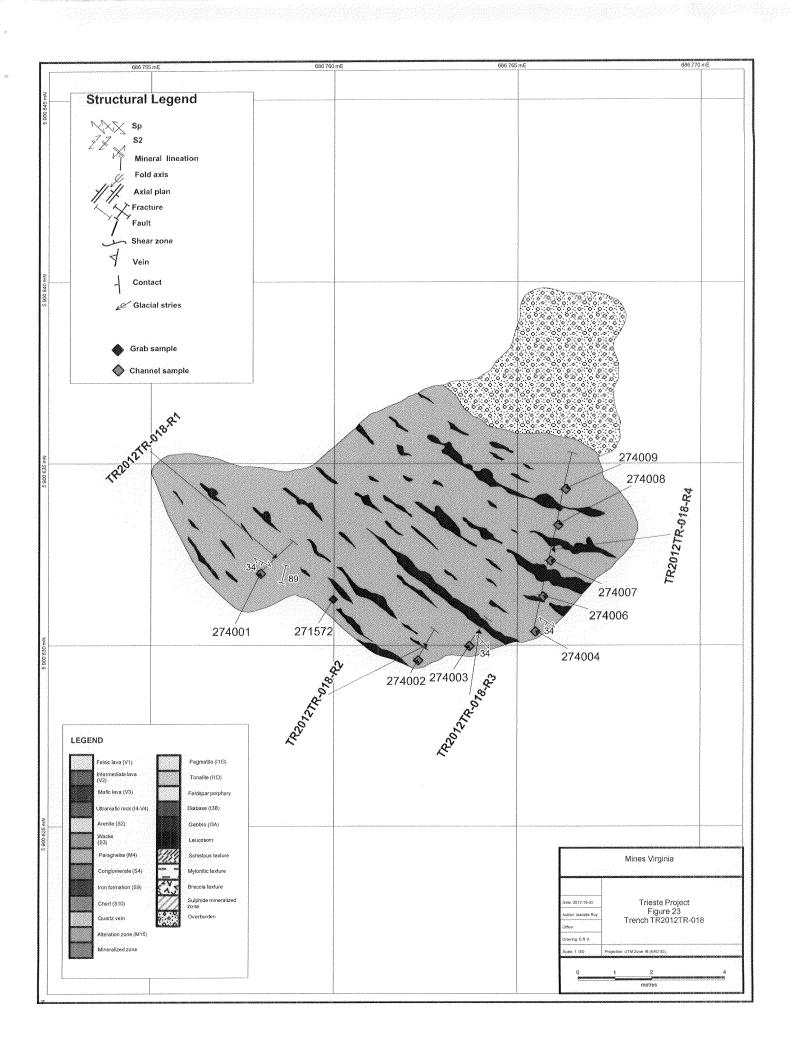


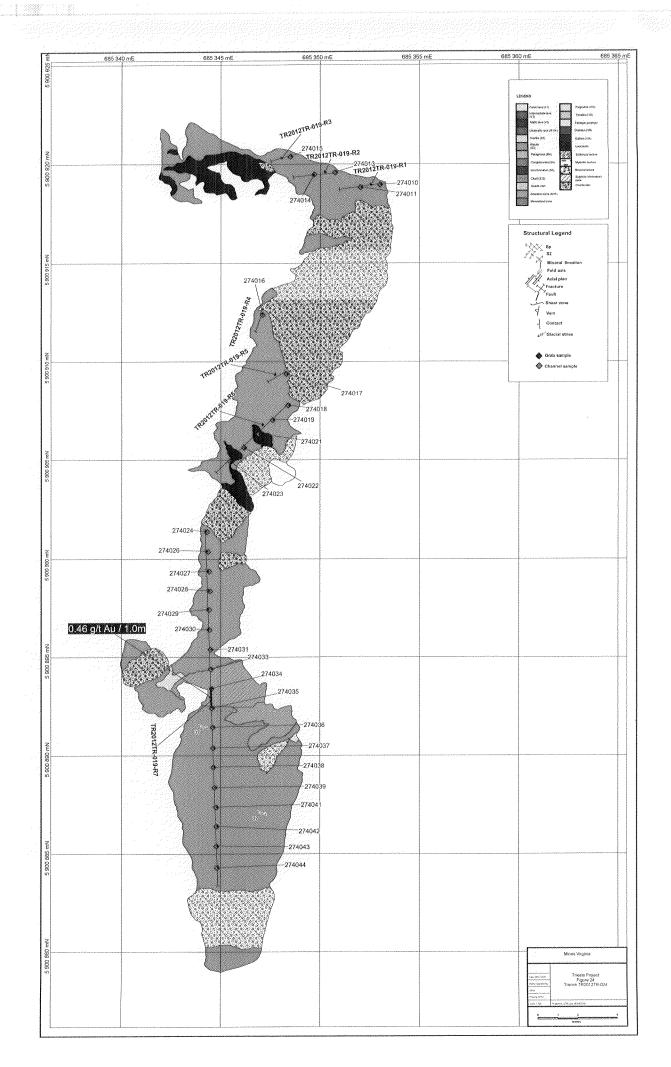


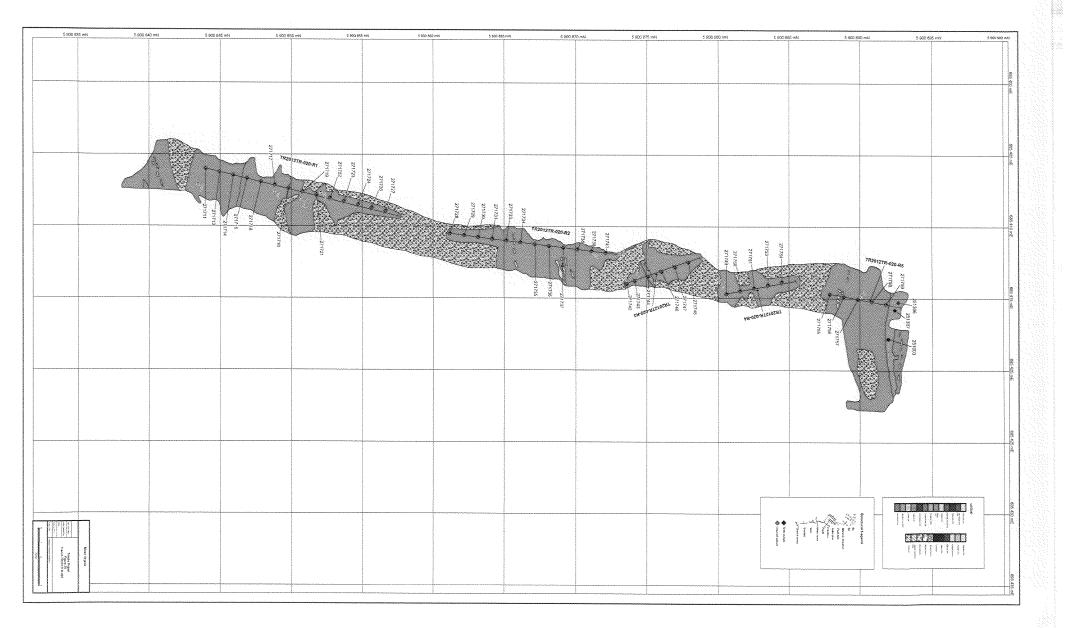


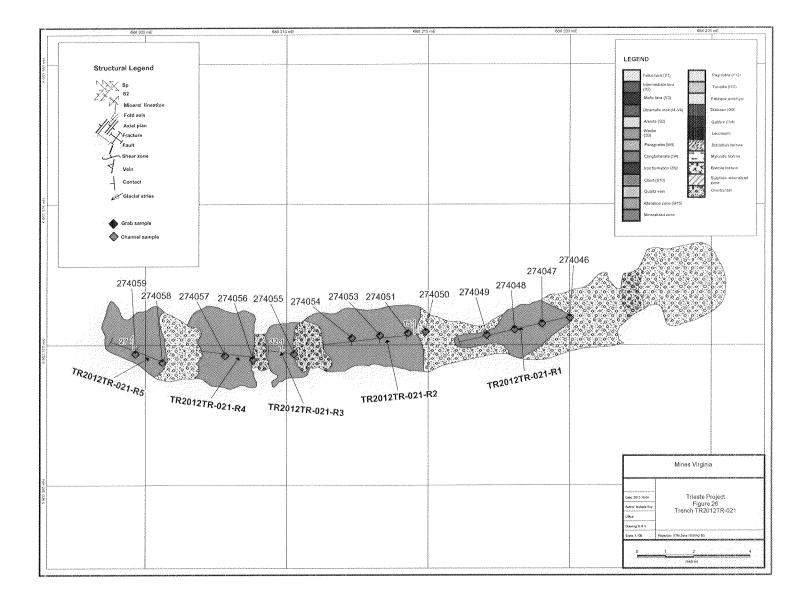


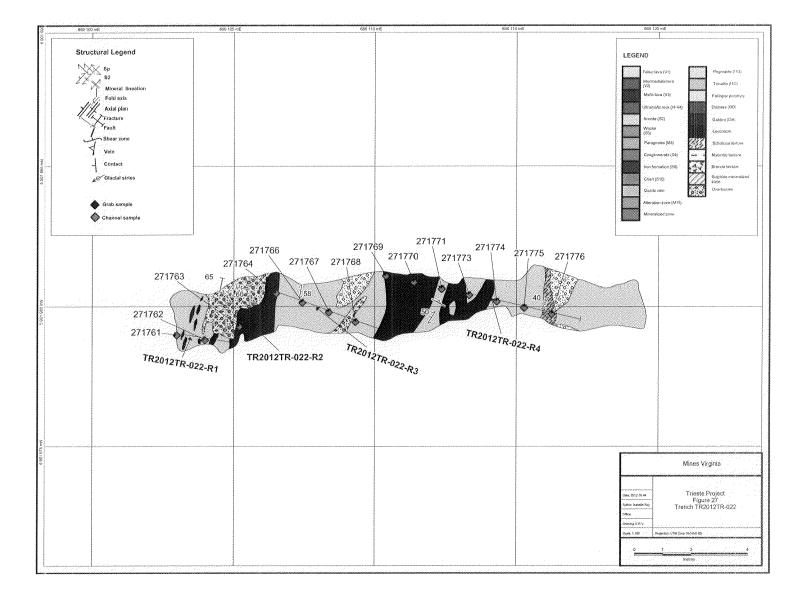

168

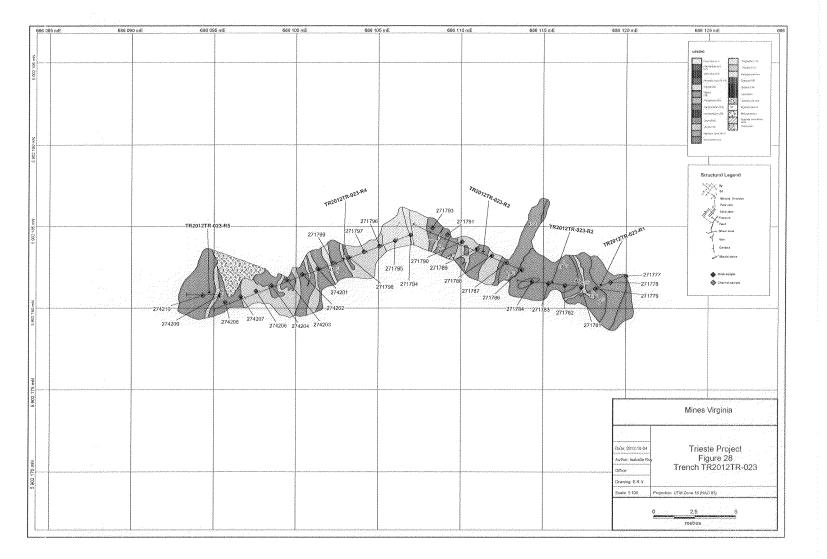

684 900 mE

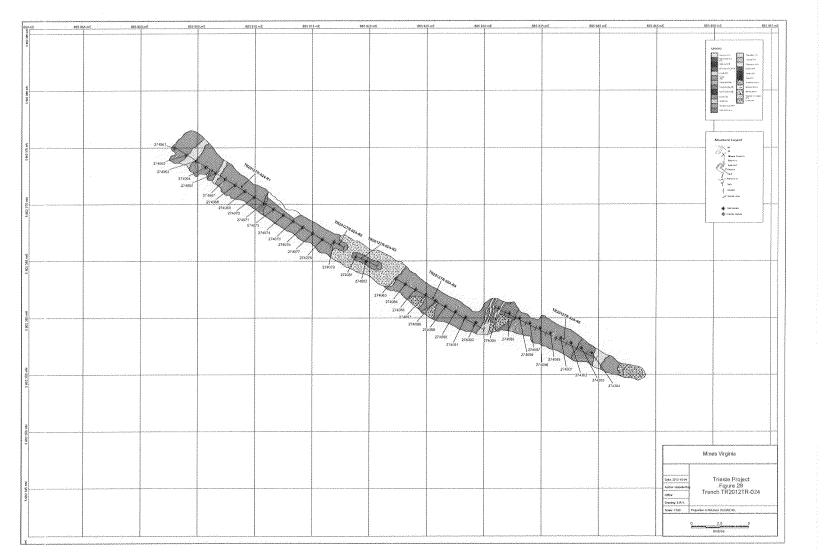

684 895 mE

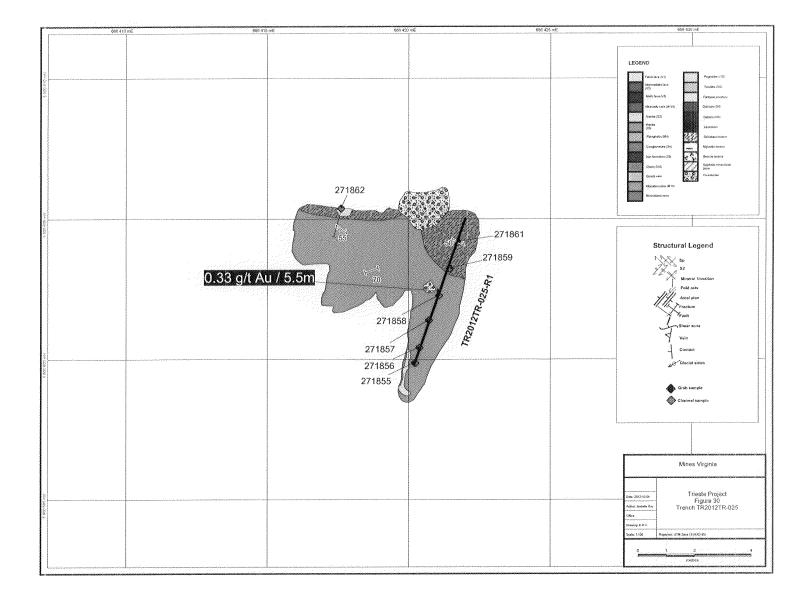


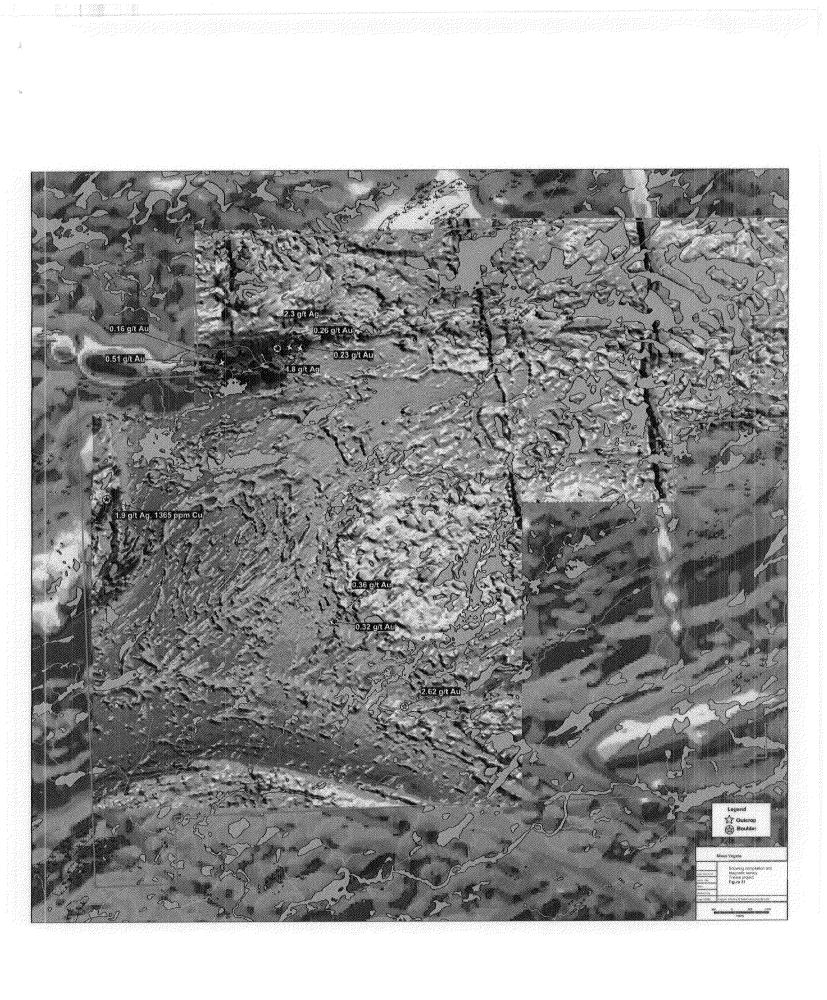


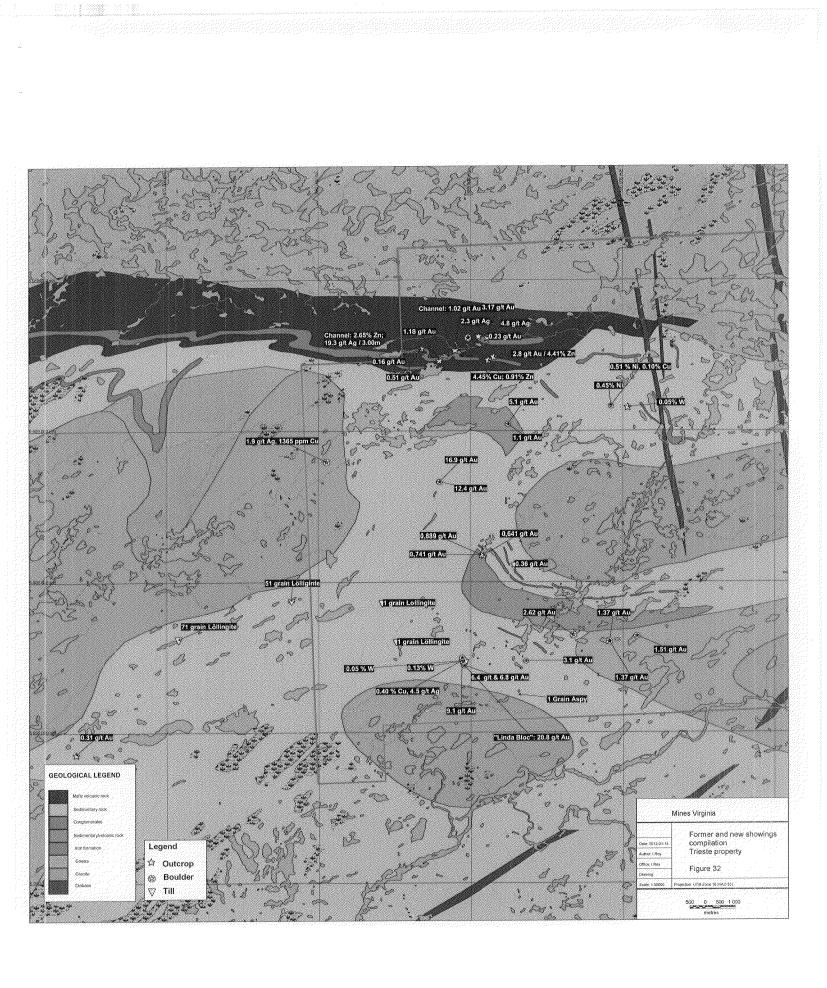












. Anna

APPENDIX 1. CLAIMS LIST, TRIESTE PROJECT

INFORMATION AVAILABLE UPON REQUEST SUBMITTED TO VIRGINIA MINES INC.

info@minesvirginia.com

Toll free number: 800 476-1853

APPENDIX 2. LIST OF ABREVIATIONS

.

Liste of abreviations

Source	Domaine	Code	Signification	Référence
VIA	Alteration		Albitisation	
VIA	Alteration	CAR	Carbonatation	
VIA	Alteration	CHL	Chloritasation	
VIA	Alteration	FRE	Fresh-Unaltered	
VIA	Alteration	_	Hematisation	1
VIA	Alteration		Potassic Alt	
VIA	Alteration		Sericitisation	
VIA	Alteration	SIL	Silicification	
VIA	Alteration		Sulfurisation	
VIA	Contrôle	СТС	associé à un contact	
VIA	Contrôle	CTL	associé au litage	
VIA	Contrôle	BFR	bordure de fragments	
VIA	Contrôle	BCO	bordures de coussins	
VIA	Contrôle	PSC	dans le plan de la schistosité	
VIA	Contrôle	ZCI	dans une zone de cisaillement	······
VIA	Contrôle	FRP	en plaquage de fracture	
VIA	Contrôle		en veines et veinules	
VIA	Contrôle	GTE	grid texture	
VIA	Contrôle	PEN	pénétrant - pervasive	
VIA	Contrôle	RAM	remplissage d'amygdules	
VIA	Contrôle	STO	stockwerk	
VIA	Contrôle	VAR	variable - mottled	
VIA	Contrôle		zones anastomosée	
	Minéralisation	Ag	Argent natif (visible)	PRO2000-08
	Minéralisation	AS	Arsénopyrite	PRO2000-08
	Minéralisation	Bi	Bismuth	PRO2000-08
	Minéralisation	BM	Bismuthinite	PRO2000-08
	Minéralisation	BS	Bismutite	PRO2000-08
	Minéralisation	BN	Bornite	PRO2000-08
	Minéralisation	BG	Boulangerite	PRO2000-08
	Minéralisation	wo	Bournonite	PRO2000-08
	Minéralisation	CT	Chalcocite(ne)	PRO2000-08
	Minéralisation	CP	Chalcopyrite	PRO2000-08
	Minéralisation	СМ	Chromite	PRO2000-08
	Minéralisation	CE	Cobaltite	PRO2000-08
	Minéralisation	NB	Columbite/Niobite	PRO2000-08
	Minéralisation	TO	Columbo-tantalite	PRO2000-08
	Minéralisation	CV	Covellite	PRO2000-08
	Minéralisation	CF	Cubanite	PRO2000-08
	Minéralisation	Cr	Cuivre natif (visible)	PRO2000-08
	Minéralisation		Cuprite	PRO2000-08
	Minéralisation		Digenite	PRO2000-08
	Minéralisation		Électrum	PRO2000-08
	Minéralisation	and the second sec	Enargite	PRO2000-08
	Minéralisation	_	Fer	PRO2000-08
	Minéralisation			PR02000-08
	Minéralisation		Ferrimolybdite Gahnite	PR02000-08
	Mineralisation			PRO2000-08
			Galène Goethite	PRO2000-08
	Minéralisation		Goethite	the second s
	Minéralisation		Hématite	PRO2000-08
	Minéralisation		Ilménite	PRO2000-08
	Minéralisation		Limonite	PRO2000-08
	Minéralisation		Loellingite	PRO2000-08
	Minéralisation		Magnétite	PRO2000-08
	Minéralisation		Malachite	PRO2000-08
	Minéralisation	MS	Marcasite	PRO2000-08

Liste of abreviations

Source	Domaine		Signification	Référence
SIGEOM	Minéralisation	MK	Merenskyite	PRO2000-08
SIGEOM	Minéralisation	NS	Millerite	PRO2000-08
SIGEOM	Minéralisation	OP	Minéraux opaques	PRO2000-08
SIGEOM	Minéralisation	MR	Minéraux radioactifs	PRO2000-08
SIGEOM	Minéralisation	МО	Molybdénite	PRO2000-08
	Minéralisation	MB	Molybdite(dine)	PRO2000-08
	Minéralisation	UN	Nickeline	PRO2000-08
	Minéralisation	VG	Or natif (visible)	
	Minéralisation	OF	Oxyde de fer	PRO2000-08
	Minéralisation	PB	Pechblende	PRO2000-08
	Minéralisation	PD	Pentlandite	PRO2000-08
	Minéralisation	PY	Pyrite	PRO2000-08
	Minéralisation	PM	Pyrochlore	PRO2000-08
	Minéralisation	PO	Pyrrhotine	PRO2000-08
	Minéralisation	SW	Scheelite	PRO2000-08
	Minéralisation	SG	Sélénite	PRO2000-08
	Minéralisation	Se	Sélénium	PRO2000-08
	Minéralisation	S	Souffre	PRO2000-08
	Minéralisation	HS	Spécularite	PRO2000-08
	Minéralisation	SP	Sphalérite	PRO2000-08
	Minéralisation	SB	Stibine/Stibnite	PRO2000-08
	Minéralisation	HD	Stilbite (Heulandite)	PRO2000-08
	Minéralisation	SF	Sulfures	PRO2000-08
	Minéralisation	OT	Tétraferroplatine	PRO2000-08
	Minéralisation	TH	Tétrahédrite	PRO2000-08
	Minéralisation	TR	Thorianite	PRO2000-08
	Minéralisation	TI	Thorite	PRO2000-08
	Minéralisation	NM	Titanomagnétite	PRO2000-08
	Minéralisation		Uraninite	PRO2000-08
	Minéralisation		Uranophane	PRO2000-08
	Minéralisation		Uranopilite	PRO2000-08
	Minéralisation		Uranothorianite	PRO2000-08
	Minéralisation		Uranothorite	PRO2000-08
	Minéralisation		Uvarovite	PRO2000-08
	Minéralisation		Wolframite	PRO2000-08
	Minéralogie		Acanthite	PR02000-08
	Minéralogie		Actinote	PRO2000-08
	Minéralogie		Aeschynite - Y	PRO2000-08
				PRO2000-08
	Minéralogie		Agate	
	Minéralogie		Aikinite	PRO2000-08 PRO2000-08
	Minéralogie		Akermanite	
	Minéralogie		Albite	PRO2000-08
	Minéralogie	;	Allanite	PRO2000-08
	Minéralogie		Altaïte	PRO2000-08
	Minéralogie		Amazonite	PRO2000-08
	Minéralogie		Améthyste	PRO2000-08
	Minéralogie		Amiante (Asbestos)	PRO2000-08
	Minéralogie		Amphibole	PRO2000-08
	Minéralogie		Anatase	PRO2000-08
	Minéralogie		Andalousite	PRO2000-08
	Minéralogie		Andésine	PRO2000-08
	Minéralogie		Andradite	PRO2000-08
	Minéralogie		Anglésite	PRO2000-08
	Minéralogie		Anhydrite	PRO2000-08
	Minéralogie		Ankérite	PRO2000-08
	Minéralogie	NG	Annabergite	PRO2000-08

Liste of abreviations

	Domaine		Signification	Référence
SIGEOM	Minéralogie	AN	Anorthite	PRO2000-08
SIGEOM	Minéralogie	AT	Anthophyllite	PRO2000-08
SIGEOM	Minéralogie	Sb	Antimoine	PRO2000-08
	Minéralogie	AP	Apatite	PRO2000-08
	Minéralogie	OA	Aragonite	PRO2000-08
	Minéralogie	AG	Augite	PRO2000-08
	Minéralogie		Autunite	PRO2000-08
	Minéralogie		Awaruite	PRO2000-08
	Minéralogie		Axinite	PRO2000-08
	Minéralogie	AZ	Azurite	PRO2000-08
	Minéralogie	BR	Barytine	PRO2000-08
	Minéralogie	BA	Bastnaesite	PRO2000-08
	Minéralogie	BL	Béryl	PRO2000-08
	Minéralogie	BF	Bétafite	PRO2000-08
	Minéralogie	BO	Biotite	PRO2000-08
	Minéralogie	BI	Birnessite	PRO2000-08
	Minéralogie	BD	Boltwoodite	PRO2000-08
	Minéralogie	DI	Braggite	PRO2000-08
	Minéralogie	BE	Brannerite	PRO2000-08
	Minéralogie	BV	Bravoite	PRO2000-08
	Minéralogie	BU	Britholite	PRO2000-08
	Minéralogie	BH	Brochantite	PRO2000-08
	Minéralogie	BC	Brucite	PRO2000-08
	Minéralogie	BT	Bytownite	PRO2000-08
	Minéralogie	CA	Calaverite	PRO2000-08
	Minéralogie	CQ	Calcédoine	PRO2000-08
	Minéralogie		Calcite	PRO2000-08
	Minéralogie	CB	Carbonate	PRO2000-08
	Minéralogie	CJ	Cattierite	PR02000-08
	Minéralogie	WD	Cérussite	PRO2000-08
	Minéralogie		Cervantite	PRO2000-08
	Minéralogie	ZB	Chabazite(Chabasite)	PR02000-08
	Minéralogie		Chamosite	PRO2000-08
	Minéralogie		Chert	PRO2000-08
	Minéralogie		Chloanthite	the second se
	Minéralogie		Chlorite	PRO2000-08 PRO2000-08
	Minéralogie			
	Minéralogie		Chloritoïde Chondrodite	PRO2000-08
SIGEON				PRO2000-08
SIGEON	Minéralogie Minéralogie		Chrysocolle	PRO2000-08
	Minéralogie		Chrysotile	PRO2000-08
			Clarkeite	PRO2000-08
	Minéralogie		Clevelandite	PRO2000-08
	Minéralogie		Clinohypersthene	PRO2000-08
	Minéralogie		Clinopyroxène	PRO2000-08
	Minéralogie		Clinozoïsite	PRO2000-08
	Minéralogie		Coffinite	PRO2000-08
	Minéralogie		Coopérite	PRO2000-08
	Minéralogie		Cordiérite	PRO2000-08
	Minéralogie		Corindon	PRO2000-08
	Minéralogie		Cosalite	PRO2000-08
	Minéralogie		Cryptomelane	PRO2000-08
	Minéralogie		Cummingtonite	PRO2000-08
	Minéralogie		Cyrtolite	PRO2000-08
	Minéralogie		Danaite	PRO2000-08
SIGEOM	Minéralogie Minéralogie		Devilline	PRO2000-08
* • *		DP	Diopside	PRO2000-08

Liste of abreviations

Source	Domaine	Code	Signification	Référence
	Minéralogie	DJ	Djurleite	PRO2000-08
	Minéralogie	DM	Dolomite	PRO2000-08
	Minéralogie	TG	Dravite	PRO2000-08
	Minéralogie	DS	Dravite-Schorlite	PRO2000-08
		ES	Enstatite	PRO2000-08
	Minéralogie			PRO2000-08
	Minéralogie	EP	Epidote	PRO2000-08
	Minéralogie	ER	Erythrite	
	Minéralogie	EU	Eudialyte	PRO2000-08
	Minéralogie	EX	Euxénite - (Y)	PRO2000-08
	Minéralogie	FA	Fayalite	PRO2000-08
	Minéralogie	FP	Feldspath	PRO2000-08
	Minéralogie	FN	Feldspath noir	PRO2000-08
	Minéralogie	FK	Feldspath potassique	PRO2000-08
	Minéralogie	FV	Feldspath vert/brun	PRO2000-08
	Minéralogie	FD	Feldspathoïde	PRO2000-08
	Minéralogie	FT	Ferghanite	PRO2000-08
	Minéralogie	FS	Fergusonite	PRO2000-08
	Minéralogie	FB	Fibrolite	PRO2000-08
	Minéralogie	AF	Fluorapatite	PRO2000-08
	Minéralogie	FL	Fluorite (fluorine)	PRO2000-08
	Minéralogie	FO	Forstérite	PRO2000-08
SIGEOM	Minéralogie	FR	Franklinite	PRO2000-08
	Minéralogie	FG	Freibergite	PRO2000-08
SIGEOM	Minéralogie	FC	Fuchsite	PRO2000-08
SIGEOM	Minéralogie	NC	Gaspéite	PRO2000-08
SIGEOM	Minéralogie	GT	Gédrite	PRO2000-08
SIGEOM	Minéralogie	NA	Gersdorffite	PRO2000-08
	Minéralogie	GC	Glaucophane	PRO2000-08
	Minéralogie	GP	Graphite	PRO2000-08
	Minéralogie	GF	Greenalite	PRO2000-08
	Minéralogie	GK	Greenockite	PRO2000-08
	Minéralogie	GR	Grenat	PRO2000-08
	Minéralogie	GM	Grenat manganésifère	PRO2000-08
	Minéralogie	GA	Grenat-almandin	PRO2000-08
	Minéralogie		Grenat-grossulaire	PRO2000-08
	Minéralogie		Grenat-pyrope	PRO2000-08
	Minéralogie		Grunérite	PRO2000-08
	Minéralogie	UD	Gudmundite	PRO2000-08
	Minéralogie		Gummite	PRO2000-08
	Minéralogie	GI	Gunningite	PRO2000-08
	Minéralogie		Gypse	PRO2000-08
	Minéralogie		Halite	PRO2000-08
	Minéralogie		Heazlewoodite	PRO2000-08
	Minéralogie		Hédenbergite	PRO2000-08
	Minéralogie		Hemimorphite	PRO2000-08
	Minéralogie		Hercynite	PRO2000-08
			Holmquistite	PRO2000-08
	Minéralogie Minéralogie		Hornblende	PRO2000-08
	Minéralogie Minéralogie			PRO2000-08
	Minéralogie Minéralogie		Hydrocerussite	PRO2000-08
	Minéralogie		Hydromagnésite	PR02000-08
	Minéralogie		Hydrozincite	
	Minéralogie		Hypersthène	PRO2000-08
	Minéralogie		Idaite	PRO2000-08
	Minéralogie		Iddingsite	PRO2000-08
	Minéralogie		Iriginite	PRO2000-08
SIGEOM	Minéralogie	IF	Isoferroplatine	PRO2000-08

Liste of abreviations

Source	Domaine	Code	Signification	Référence
	Minéralogie	JA	Jade	PRO2000-08
SIGEOM	Minéralogie	JS	Jarosite	PRO2000-08
	Minéralogie	JP	Jaspe	PRO2000-08
	Minéralogie	KL	Kaolinite	PRO2000-08
	Minéralogie	KS	Kasolite	PRO2000-08
	Minéralogie	KM	Kermésite	PRO2000-08
	Minéralogie	KK	Klockmannite	PRO2000-08
	Minéralogie	KP	Kornérupine	PRO2000-08
	Minéralogie	KR	Krennerite	PRO2000-08
	Minéralogie	KN	Kyanite/Disthène	PRO2000-08
	Minéralogie		Labradorite	PRO2000-08
			Laumontite	PRO2000-08
	Minéralogie		Laurite	PRO2000-08
	Minéralogie		Lawsonite	PRO2000-08
	Minéralogie Minéralogie	LD	Lepidocrocite	PRO2000-08
	Minéralogie			PRO2000-08
	Minéralogie Minéralogie		Lépidolite Lessingite	PRO2000-08
	Minéralogie Minéralogie		Leucite	PRO2000-08
	Minéralogie Minérologie			PRO2000-08
	Minéralogie			PRO2000-08
	Minéralogie		Linnaéite	
	Minéralogie	DHIC	Maghémite Magnésisabramita	PRO2000-08 PRO2000-08
	Minéralogie		Magnésiochromite	PRO2000-08
	Minéralogie	MN	Magnésite	
	Minéralogie	MM	Manganite	PRO2000-08
	Minéralogie	MT	Mariposite	PRO2000-08
	Minéralogie	ZF	Marmatite	PRO2000-08
	Minéralogie	MH	Martite	PRO2000-08
	Minéralogie	ME	Mélilite	PRO2000-08
	Minéralogie	MW	Melonite	PRO2000-08
	Minéralogie	NE	Ménéghinite	PRO2000-08
	Minéralogie	MP	Mésoperthite	PRO2000-08
	Minéralogie	WH	Meymacite	PRO2000-08
	Minéralogie	MI	Mica	PRO2000-08
	Minéralogie	ML	Microcline	PRO2000-08
	Minéralogie	MA	Minéraux argileux	PRO2000-08
	Minéralogie		Minéraux décoratifs	PRO2000-08
	Minéralogie		Minéraux lourds	PRO2000-08
	Minéralogie	MF	Minéraux mafiques	PRO2000-08
	Minéralogie	MU	Minnesotaite	PRO2000-08
	Minéralogie	MZ	Monazite	PRO2000-08
	Minéralogie	OM	Monticellite	PRO2000-08
	Minéralogie		Muscovite	PRO2000-08
	Minéralogie	NP	Néphéline	PRO2000-08
	Minéralogie	OI	Niocalite	PRO2000-08
	Minéralogie	OC	Ocre	PRO2000-08
	Minéralogie	OG	Oligoclasse	PRO2000-08
	Minéralogie	OV	Olivine	PRO2000-08
	Minéralogie	OR	Orthoclase (orthose)	PRO2000-08
	Minéralogie	OX	Orthopyroxène	PRO2000-08
	Minéralogie	OL	Ottrelite	PRO2000-08
	Minéralogie	OH	Oxyhornblende (Hornblende brune)	PRO2000-08
	Minéralogie		Paragonite	PRO2000-08
	Minéralogie	PT	Penninite/Pennine	PRO2000-08
SIGEOM	Minéralogie		Péristérite	PRO2000-08
SIGEOM	Minéralogie	PK	Perovskite	PRO2000-08
SIGEOM	Minéralogie	PR	Perthite	PRO2000-08
				Page 5 de 20

Liste of abreviations

Course	Domaina	Code	Signification	Référence
	Domaine Minéralogie		Petzite	PRO2000-08
	Minéralogie	PA	Phénacite/Phénakite	PRO2000-08
			Phlogopite	PRO2000-08
	Minéralogie			PRO2000-08
	Minéralogie		Phosphuranylite	
	Minéralogie		Picrolite	PRO2000-08
	Minéralogie		Pistachite	PRO2000-08
	Minéralogie		Plagioclase	PRO2000-08
	Minéralogie	ZP	Pollucite	PRO2000-08
	Minéralogie	PJ	Posniakite	PRO2000-08
	Minéralogie	PN	Préhnite	PRO2000-08
	Minéralogie	PP	Pumpellyite	PRO2000-08
	Minéralogie	PS	Pyrolusite	PRO2000-08
	Minéralogie	PL	Pyrophyllite	PRO2000-08
	Minéralogie	PX	Pyroxène	PRO2000-08
	Minéralogie	QZ	Quartz	PRO2000-08
	Minéralogie	QB	Quartz bleu	PRO2000-08
	Minéralogie		Rhodochrosite	PRO2000-08
	Minéralogie		Rhodonite	PRO2000-08
	Minéralogie		Riebeckite	PRO2000-08
	Minéralogie	RM	Romanechite	PRO2000-08
	Minéralogie		Roscoelite	PRO2000-08
	Minéralogie	RZ	Rozénite	PRO2000-08
	Minéralogie		Rutile	PRO2000-08
	Minéralogie	FF	Safflorite	PRO2000-08
	Minéralogie	SK	Samarskite	PRO2000-08
	Minéralogie	UL	Samarskite - (Y)	PRO2000-08
	Minéralogie	SA	Sanidine	PRO2000-08
	Minéralogie		Sapphirine	PRO2000-08
	Minéralogie	SC	Scapolite	PRO2000-08
	Minéralogie	TF	Schorlite(Schorl)	PRO2000-08
	Minéralogie		Sénarmontite	PRO2000-08
	Minéralogie		Séricite	PRO2000-08
	Minéralogie	ST	Serpentine	PRO2000-08
	Minéralogie		Sidérite(sidérose)	PRO2000-08
SIGEOM	Minéralogie		Sidérotil	PRO2000-08
SIGEOM	Minéralogie	SM	Sillimanite	PRO2000-08
SIGEOM	Minéralogie	DW	Sklodowskite	PRO2000-08
SIGEOM	Minéralogie	TW	Smaltite/Smaltine	PRO2000-08
SIGEOM	Minéralogie	ZO	Smithsonite	PRO2000-08
SIGEOM	Minéralogie	SS	Sodalite	PRO2000-08
	Minéralogie		Soddyite	PRO2000-08
	Minéralogie		Spessartine	PRO2000-08
	Minéralogie		Sphène/Titanite	PRO2000-08
	Minéralogie		Spinelle	PRO2000-08
	Minéralogie		Spodumène	PRO2000-08
	Minéralogie		Stannite	PRO2000-08
	Minéralogie		Starkéyite	PRO2000-08
	Minéralogie		Staurotide	PRO2000-08
	Minéralogie		Stéatite	PRO2000-08
	Minéralogie		Stibiconite	PRO2000-08
	Minéralogie		Stilpnomélane	PRO2000-08
	Minéralogie		Sylvanite	PRO2000-08
	Minéralogie		Szomolnokite	PRO2000-08
	Minéralogie		Talc	PRO2000-08
	Minéralogie		Tantalite	PRO2000-08
	Minéralogie		Tellurobismuthite	PRO2000-08
				Page 6 de 20

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM	Minéralogie	TT	Tennantite	PRO2000-08
SIGEOM	Minéralogie	TE	Tenorite	PRO2000-08
	Minéralogie	TD	Tétradymite	PRO2000-08
	Minéralogie	ZT	Thomsonite	PRO2000-08
	Minéralogie	ΗU	Thucholite	PRO2000-08
	Minéralogie	TZ	Тораze	PRO2000-08
	Minéralogie	TU	Torbernite	PRO2000-08
SIGEOM	Minéralogie	TL	Tourmaline	PRO2000-08
	Minéralogie	TA	Tourmaline zincifère	PRO2000-08
	Minéralogie		Trémolite	PRO2000-08
	Minéralogie	US	Ulvöspinel	PRO2000-08
	Minéralogie	VA	Valentinite	PRO2000-08
	Minéralogie	VL	Valleriite	PRO2000-08
	Minéralogie	VR	Vermiculite	PRO2000-08
	Minéralogie	VIX	Vésuvianite	PRO2000-08
	Minéralogie	VO	Violarite	PRO2000-08
	Minéralogie	WM	Willemite	PRO2000-08
	Minéralogie	WS	Wilsonite	PRO2000-08
	Minéralogie	WS	Wollastonite	PRO2000-08
	Minéralogie	WN	Wulfenite	PRO2000-08
	Minéralogie		Xénotime-(Y)	PRO2000-08
			Zéolite	PRO2000-08
	Minéralogie	ZL		PR02000-08
	Minéralogie	ZN	Zincite	
	Minéralogie	ZC	Zircon	PRO2000-08
	Minéralogie	ZS		PRO2000-08
	OrganoFossile		Autres	PRO2000-08
	OrganoFossile	XB	Bioclastes	PRO2000-08
	OrganoFossile		Brachiopodes	PRO2000-08
	OrganoFossile	YZ	Bryozoaires	PRO2000-08
	OrganoFossile	YC	Céphalopodes	PRO2000-08
	OrganoFossile	XC	Ciment	PRO2000-08
	OrganoFossile	YA	Conulaires	PRO2000-08
	OrganoFossile	YX	Coraux	PRO2000-08
	OrganoFossile		Crinoïdes	PRO2000-08
	OrganoFossile		Échinodermes	PRO2000-08
	OrganoFossile		Éponges	PRO2000-08
	OrganoFossile		Fossile	PRO2000-08
	OrganoFossile		Gastéropodes	PRO2000-08
	OrganoFossile		Graptolites	PRO2000-08
	OrganoFossile		Hydrocarbures	PRO2000-08
	OrganoFossile		Liant	PRO2000-08
SIGEOM	OrganoFossile	XR	Lithoclastes	PRO2000-08
	OrganoFossile		Matière organique	PRO2000-08
SIGEOM	OrganoFossile	XM	Matrice	PRO2000-08
SIGEOM	OrganoFossile	XT	Oncolites	PRO2000-08
	OrganoFossile	хо	Oolites	PRO2000-08
	OrganoFossile	YO	Ostracodes	PRO2000-08
	OrganoFossile	YP	Pélécipodes	PRO2000-08
	OrganoFossile		Pellets	PRO2000-08
	OrganoFossile		Péloïdes	PRO2000-08
	OrganoFossile		Plantes	PRO2000-08
	OrganoFossile		Poissons	PRO2000-08
	OrganoFossile		Stromatoïdes	PRO2000-08
	OrganoFossile		Stromatoporoïdes	PRO2000-08
	OrganoFossile		Traces fossiles	PRO2000-08
	OrganoFossile		Trilobites	PRO2000-08
		<u> </u>		Page 7 de 20

•

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		14QA	Aillikite	MB96-28
SIGEOM		I1K	Alaskite	MB96-28
SIGEOM		140A	Alnoite	MB96-28
SIGEOM		V2J	Andésite	MB96-28
SIGEOM			Anhydrite	MB96-28
SIGEOM			Anorthosite	MB96-28
SIGEOM		I3T	Anorthosite à hyperstène	MB96-28
SIGEOM			Anorthosite foidifère	MB96-28
SIGEOM		I3H	Anorthosite gabbroique	MB96-28
SIGEOM			Anorthosite quartzifère	MB96-28
SIGEOM			Aplite	MB96-28
SIGEOM		S2	Arénite	MB96-28
SIGEOM			Arénite arkosique	MB96-28
SIGEOM			Arénite lithique	MB96-28
SIGEOM			Arénite Quartizitique	MB96-28
SIGEOM			Arkose	MB96-28
		S2C	Arkose	MB96-28
SIGEOM SIGEOM		\$20 \$7J	Bafflestone	MB96-28
		V3B	Basalte	MB96-28
SIGEOM		V3B V3E	Basalte à olivine	MB96-28
SIGEOM			Basalte à guartz	MB96-28
SIGEOM			Basalte a quarz Basalte andésitique/Andésite basaltique	MB96-28
SIGEOM		V3A		MB96-28
SIGEOM		V3F	Basalte magnésien	MB96-28
SIGEOM		V3H	Basanite	MB96-28
SIGEOM			Basanite phonolitique	
SIGEOM			Benmoréite	MB96-28
SIGEOM		V3J	Bonninite	MB96-28
SIGEOM		<u>S7I</u>	Boundstone	MB96-28
SIGEOM		S5	Brèche	MB96-28
SIGEOM		S5G	Brèche Intraformationnel	MB96-28
SIGEOM		S5H	Brèche Intraformationnel Fermé	MB96-28
SIGEOM		S5I	Brèche Intraformationnel Ouvert	MB96-28
SIGEOM		S5A	Brèche Monogénique	MB96-28
SIGEOM		S5B	Brèche Monogénique Fermé	MB96-28
SIGEOM		S5C	Brèche Monogénique Ouvert	MB96-28
SIGEOM	Roche		Brèche Polygénique	MB96-28
SIGEOM	Roche		Brèche Polygénique Fermé	MB96-28
SIGEOM	Roche	S5F	Brèche Polygénique Ouvert	MB96-28
SIGEOM	Roche	S7	Calcaire	MB96-28
SIGEOM	Roche	S7C	Calcarénite	MB96-28
SIGEOM	Roche	S7A	Calcilulite	MB96-28
SIGEOM		I4QC	Calciocarbonatite	MB96-28
SIGEOM		S7D	calcirudite	MB96-28
SIGEOM		S7B	calcisiltite	MB96-28
SIGEOM		140C	Camptonite	MB96-28
SIGEOM		I4Q	Carbonatite	MB96-28
SIGEOM		I1P	Charnockite (Granite à hyperstène)	MB96-28
SIGEOM		110	Charnockite à feldspath alcalin	MB96-28
SIGEOM		S10	Chert	MB96-28
SIGEOM			Chert Carbonaté	MB96-28
SIGEOM			Chert Ferrugineux	MB96-28
SIGEOM			Chert Graphiteux/Carboné	MB96-28
SIGEOM			Chert Oxydé	MB96-28
SIGEOM			Chert Silicaté	MB96-28
SIGEOM			Chert Sulfuré	MB96-28
SIGEOM			Clayshale	MB96-28
		1 3311		Page 8 de 20

•

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		S61	Clayslate	MB96-28
SIGEOM			Claystone	MB96-28
SIGEOM		I4C	Clinopyroxénite	MB96-28
SIGEOM		I4F	Clinopyroxénite à olivine	MB96-28
SIGEOM			Commendite	MB96-28
SIGEOM		S4	Conglomérat	MB96-28
SIGEOM		S4G	Conglomérat intraformationnel	MB96-28
SIGEOM		S4H	Conglomérat intraformationnel Fermé	MB96-28
SIGEOM		S4I	Conglomérat intraformationnel Ouvert	MB96-28
SIGEOM		S4A	Conglomérat monogénique	MB96-28
SIGEOM		S4B	Conglomérat monogénique fermé	MB96-28
SIGEOM		S4C	Conglomérat monogénique Ouvert	MB96-28
SIGEOM			Conglomérat polygénique	MB96-28
SIGEOM			Conglomérat polygénique Fermé	MB96-28
SIGEOM		S4F	Conglomérat polygénique Ouvert	MB96-28
SIGEOM			Dacite	MB96-28
SIGEOM			Damtjernite	MB96-28
SIGEOM		I3B	Dangemie	MB96-28
SIGEOM		I3B I3M	Diabase à olivine	MB96-28
		I3M I3F	Diabase à guatrz	MB96-28
SIGEOM		13F 12J	Diabase a quatrz	MB96-28
SIGEOM		12J 12Q	Diorite à hyperstène	MB96-28
SIGEOM				MB96-28
SIGEOM		I2JR	Diorite foidifère	MB96-28
SIGEOM		I2JF	Diorite foidique	MB96-28
SIGEOM		121	Diorite quartzifère	MB96-28
SIGEOM		S8C	Dolarénite	MB96-28
SIGEOM		S8A	Dololutite	MB96-28
SIGEOM		S8	Dolomite	
SIGEOM		S8D	Dolorudite	MB96-28
SIGEOM		S8B	Dolosilite	MB96-28
SIGEOM		14M	Dunite	MB96-28
SIGEOM		11T	Enderbite (Tonalite à hyperstène)	MB96-28
SIGEOM			Évaporite	MB96-28
SIGEOM			Exhalite	MB96-28
SIGEOM			Ferrocarbonatite	MB96-28
SIGEOM			Ferrogabbro	MB96-28
SIGEOM			Filon/Veine de quartz	MB96-28
SIGEOM	Roche		Foidite	MB96-28
SIGEOM			Foidite phonolitique	MB96-28
SIGEOM			Foidite téphritique	MB96-28
SIGEOM		14S	Foidolite	MB96-28
SIGEOM			Formation de fer	MB96-28
SIGEOM			Formation de fer Carbonatée	MB96-28
SIGEOM			Formation de fer indéterminée	MB96-28
SIGEOM			Formation de fer oxydée	MB96-28
SIGEOM			Formation de fer Silicatée	MB96-28
SIGEOM		S9E	Formation de fer Sulfurée	MB96-28
SIGEOM		I3A	Gabbro	MB96-28
SIGEOM		13K	Gabbro à olivine	MB96-28
SIGEOM		I3E	Gabbro à quartz	MB96-28
SIGEOM	Roche	3	Gabbro anorthosite	MB96-28
SIGEOM		13AR	Gabbro foidifère	MB96-28
SIGEOM		13Q	Gabbronorite	MB96-28
SIGEOM		I3R	Gabbronorite à olivine	MB96-28
SIGEOM		S7H	Grainstone	MB96-28
SIGEOM		I1B	Granite	MB96-28
2.320.0		_		Page 9 de 20

.

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM			Granite à feldspath alcalin	MB96-28
SIGEOM		111	Granitoide riche en quartz	MB96-28
SIGEOM		I1C	Granodiorite	MB96-28
SIGEOM		11S	Grano-diotite à hyperstène	MB96-28
SIGEOM		110 11H	Granophyre	MB96-28
SIGEOM		S1	Grès	MB96-28
SIGEOM		S1D	Grès Arkosique	MB96-28
SIGEOM		S1B	Grès Feldspathique	MB96-28
SIGEOM			Grès Lithique	MB96-28
SIGEOM		S1F	Grès Lithique subfeldspathitique	MB96-28
SIGEOM		S1A	Grès Quartzique	MB96-28
SIGEOM			Gypse	MB96-28
SIGEOM			Halite	MB96-28
SIGEOM			Harzburgite	MB96-28
SIGEOM			Hawaiite	MB96-28
SIGEOM		14A	Hornblendite	MB96-28
SIGEOM			Icelandite	MB96-28
SIGEOM			Icelandite basaltique	MB96-28
SIGEOM		11	Intrusion felsique	MB96-28
SIGEOM		12	Intrusion Intermédiaire	MB96-28
SIGEOM		13	Intrusion mafigue	MB96-28
SIGEOM		10	Intrusion ultramafique	MB96-28
SIGEOM			Jaspe, Jaspilite	MB96-28
SIGEOM		I2P	Jotunite (Monzodiorite à hyperstène)	MB96-28
SIGEOM			Kersantite	MB96-28
SIGEOM		I4P	Kimberlite	MB96-28
SIGEOM			Kimberlite (groupe I)	MB96-28
SIGEOM			Kimberlite (groupe II)	MB96-28
SIGEOM		V4A	Komatiite	MB96-28
SIGEOM			Komatiite dunitique	MB96-28
SIGEOM			Komatiite péridotitique	MB96-28
SIGEOM		V4B	Komatiite pyroxénitique	MB96-28
SIGEOM		I4R	Lamproite	MB96-28
SIGEOM		130	Lamprophyre mafique	MB96-28
SIGEOM		140	Lamprophyre ultrabasique	MB96-28
SIGEOM			Latite	MB96-28
SIGEOM			Latite foidifère	MB96-28
SIGEOM			Latite quartzifère	MB96-28
SIGEOM			Leuconorite	MB96-28
SIGEOM			Lherzolite	MB96-28
SIGEOM			Magnésiocarbonatite	MB96-28
SIGEOM		120	Mangérite (Monzonite à hyperstène)	MB96-28
SIGEOM		V4E	Meimechite	MB96-28
SIGEOM		V4F	Melilitite	MB96-28
SIGEOM		V4FO	Melilitite à olivine	MB96-28
SIGEOM		I4T	Mélilitolite	MB96-28
SIGEOM		13OM	Minette	MB96-28
SIGEOM			Monchiquite	MB96-28
SIGEOM		I2H	Monzodiorite	MB96-28
SIGEOM		I2HR	Monzodiorite foidifère	MB96-28
SIGEOM		12HF	Monzodiorite foidique	MB96-28
SIGEOM		12G	Monzodiorite quartzifère	MB96-28
SIGEOM		I3C	Monzogabbro	MB96-28
SIGEOM			Monzogabbro foidifère	MB96-28
SIGEOM			Monzogabbro foidique	MB96-28
SIGEOM			Monzogabbro guartzifère	MB96-28
				Page 10 de 20

•

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM	Roche	I1M	Monzo-Granite	MB96-28
SIGEOM	Roche	I1R	Monzo-granite à hyperstène	MB96-28
SIGEOM	Roche	12F	Monzonite	MB96-28
SIGEOM	Roche	I2FR	Monzonite foidifère	MB96-28
SIGEOM		I2E	Monzonite quartzifère	MB96-28
SIGEOM		135	Monzonorite	MB96-28
SIGEOM		12K	Monzosyénite	MB96-28
SIGEOM			Monzosyénite foidique	MB96-28
SIGEOM		OB	Mort Terrain (Overburden)	
SIGEOM		S6	Mudrock	MB96-28
SIGEOM			Mudshale	MB96-28
SIGEOM			Mudslate	MB96-28
SIGEOM			Mudstone	MB96-28
SIGEOM			Mudstone	MB96-28
SIGEOM			Mugéargite	MB96-28
SIGEOM			Néphélinite	MB96-28
		13J	Norite	MB96-28
SIGEOM		13J 13L	Norite à olivine	MB96-28
SIGEOM		13L 14E		MB96-28
SIGEOM			Orthopyroxénite	MB96-28
SIGEOM		14H	Orthopyroxénite à olivine	MB96-28
SIGEOM		S7G	Packstone	
SIGEOM			Pantellérite	MB96-28
SIGEOM		I1G	Pegmatite (granitique)	MB96-28
SIGEOM		4	Péridotite	MB96-28
SIGEOM			Phonolite	MB96-28
SIGEOM			Phonolite téphritique	MB96-28
SIGEOM		V4H	Picrite	MB96-28
SIGEOM			Picrobasalte	MB96-28
SIGEOM			Polzénite	MB96-28
SIGEOM	Roche	I4B	Pyroxénite	MB96-28
SIGEOM	Roche	I1J	Quartzolite (Silexite)	MB96-28
SIGEOM	Roche	V1C	Rhyodacite	MB96-28
SIGEOM	Roche	V1B	Rhyolite	MB96-28
SIGEOM	Roche	V1A	Rhyolite à feldspath alcalin	MB96-28
SIGEOM	Roche	V4M	Roche volcanique ultramafique à melilite	MB96-28
SIGEOM	Roche	S7K	Rudstone	MB96-28
SIGEOM	Roche	140S	Sannaite	MB96-28
SIGEOM		S	Sédiments	MB96-28
SIGEOM		I4N	Serpentinite	MB96-28
SIGEOM			Shoshonite	MB96-28
SIGEOM			Siltshale	MB96-28
SIGEOM			Siltslate	MB96-28
SIGEOM		S6A	Siltsone	MB96-28
SIGEOM		1305	Spessartite	MB96-28
SIGEOM		S2B	SubArkose	MB96-28
SIGEOM			Sublitharénite	MB96-28
SIGEOM			Sulfate	MB96-28
SIGEOM		F1	Sulfures Massifs	MB96-28
SIGEOM			Sulfures semi-Massifs	MB96-28
SIGEOM		12D	Syénite	MB96-28
SIGEOM		12D	Syénite à feldspath alcalin	MB96-28
SIGEOM		12B	Syénite à hyperstène	MB96-28
			Syénite foidifère	MB96-28
SIGEOM				MB96-28
SIGEOM			Syénite foidifère à feldspath alcalin	MB96-28
SIGEOM		I2DF	Syénite foidique	MB96-28
SIGEOM	Roche	12C	Syénite quartzifère	Page 11 de 20

•

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		I2A	Syénite quartzifère à feldspath alcalin	MB96-28
SIGEOM		12M	Syénite quartzifère à feldspath alcalin avec hyperstène	MB96-28
SIGEOM		I1L	Syéno-granite	MB96-28
SIGEOM		11Q	Syéno-granite à hyperstène	MB96-28
SIGEOM			Sylvite	MB96-28
SIGEOM		V3I	Téphrite	MB96-28
SIGEOM		V3IP	Téphryte phonolitique	MB96-28
SIGEOM		S4J	Tillite	MB96-28
SIGEOM		I1D	Tonalite	MB96-28
SIGEOM		V2F	Trachyandésite	MB96-28
SIGEOM		V3G	Trachyandésite basaltique	MB96-28
SIGEOM		V3D	Trachybasalte	MB96-28
SIGEOM			Trachybasalte potassique	MB96-28
SIGEOM			Trachydacite	MB96-28
SIGEOM			Trachyte	MB96-28
SIGEOM			Trachyte à feldspath alcalin	MB96-28
			Trachyte commenditique	MB96-28
SIGEOM			Trachyte foidifère	MB96-28
SIGEOM			Trachyte foidifère à feldspath alcalin	MB96-28
			Trachyte pantellétique	MB96-28
SIGEOM			Trachyte guartzifère	MB96-28
SIGEOM		V2C		MB96-28
SIGEOM		V2A	Trachyte quartzifère à feldspath alcalin	
SIGEOM		I3N	Troctolite	MB96-28
SIGEOM		I1E	Trondhjémite	MB96-28
SIGEOM		130V	Vogesite	MB96-28
SIGEOM		V	Volcanite	MD00.00
SIGEOM		V1	Volcanite felsique	MB96-28
SIGEOM		V2	Volcanite Intermédiaire	MB96-28
SIGEOM		V3	Volcanite mafique	MB96-28
SIGEOM		V4	Volcanite ultramafique	MB96-28
SIGEOM		S3	Wacke	MB96-28
SIGEOM		S3C	Wacke Arkosique	MB96-28
SIGEOM		S3D	Wacke Feldspathique	MB96-28
SIGEOM		S3E	Wacke Lithique	MB96-28
SIGEOM		S3A	Wacke Quartzitique	MB96-28
SIGEOM	Roche	S7F	Wackestone	MB96-28
SIGEOM	Roche	I4D	Websterite	MB96-28
SIGEOM	Roche	I4G	Websterite à olivine	MB96-28
SIGEOM	Roche	14J	Wehrlite	MB96-28
SIGEOM	Roche Métamorphique	M23	Agmatite	MB96-28
SIGEOM	Roche Métamorphique	M16	Amphibolite	MB96-28
SIGEOM	Roche Métamorphique	M26	Brèche Tectonique	MB96-28
SIGEOM	Roche Métamorphique	M24	Cataclastite	MB96-28
	Roche Métamorphique	M18	Cornéenne	MB96-28
	Roche Métamorphique	M31	Coticule	MB96-28
	Roche Métamorphique	M21	Diatexite	MB96-28
	Roche Métamorphique	M17	Éclogite	MB96-28
	Roche Métamorphique	M1	Gneiss	MB96-28
	Roche Métamorphique	T3A	Gneiss droit («straight gneiss»)	MB96-28
	Roche Métamorphique	M6	Gneiss granitique	MB96-28
	Roche Métamorphique	T3D	Gneiss irrégulier	MB96-28
	Roche Métamorphique	T3B	Gneiss porphyroclastique	MB96-28
	Roche Métamorphique	M5	Gneiss Quartzofeldspathique	MB96-28
	Roche Métamorphique	T3C	Gneiss régulier	MB96-28
SIGEOM				
	Roche Métamorphique	M2	Gneiss Rubané	MB96-28

٠

Liste of abreviations

Source	Domaine	Code	Signification	Référence
	Roche Métamorphique	M7	Granulite	MB96-28
	Roche Métamorphique		Marbre	MB96-28
	Roche Métamorphique		Métatexite	MB96-28
	Roche Métamorphique		Migmatite	MB96-28
	Roche Métamorphique		Mylonite	MB96-28
	Roche Métamorphique	M3	Orthogneiss	MB96-28
	Roche Métamorphique	M9	Orthoschiste	MB96-28
	Roche Métamorphique	M4	Paragneiss	MB96-28
	Roche Métamorphique		Paraschiste	MB96-28
	Roche Métamorphique		Phyllade	MB96-28
	Roche Métamorphique	M12	Quartzite	MB96-28
	Roche Métamorphique		Roche Calco-Silicatée	MB96-28
	Roche Métamorphique		Roche Métasomatique (Skarn)	MB96-28
	Roche Métamorphique	M8	Schiste	MB96-28
	Roche Métamorphique	M30	Tourmalinite	MB96-28
	Roche Tectonite	T2E	Blastomylonite	MB96-28
	Roche Tectonite	T1A	Brèche de Faille	MB96-28
	Roche Tectonite	T1F	Brèche d'Impact	MB96-28
	Roche Tectonite	T4	Brèche tectonique	MB96-28
	Roche Tectonite	T4B	Brèche tectonique à matrice de marbre	MB96-28
	Roche Tectonite	14 <u>6</u> T1	Cataclastite	MB96-28
	Roche Tectonite	T1C	Gouge de faille	MB96-28
			Impactite	MB96-28
	Roche Tectonite	T4A	Mélange tectonique	MB96-28
	Roche Tectonite	T1B	Microbrèche de Faille	MB96-28
	Roche Tectonite	T1E		MB96-28
	Roche Tectonite		Mylolisthénite	MB96-28
	Roche Tectonite	T2	Mylonite	MB96-28
	Roche Tectonite	T2B	Orthomylonite	MB96-28
	Roche Tectonite	T2D	Phyllonite	
	Roche Tectonite	T2A	Protomylonite	MB96-28
	Roche Tectonite	T1D	Pseudotachylite	MB96-28 MB96-28
	Roche Tectonite	T2C		101090-20
	Structure	APL	Axe de Pli	
VIA	Structure	DIA	Diaclase, Joint, Fracture	
VIA	Structure	DYK	Dyke	
VIA	Structure		Faille, Cisaillement	
	Structure	FOL	Foliation	
VIA	Structure		Lamination, Rubannement, Flow banding	
the second s	Structure		Linéation	
	Structure		Litage, Bedding, S0, Stratification	
	Structure	PAX	Plan Axial	
	Structure	SCH	Schistosité, Gneissosité, SP, S1, S2, S3	
	Structure	SGL	Strie Glaciaire	
	Structure	VEI	Veine	
	Structure		Axe de mullion	PRO2000-08
	Structure	В	Axe de boudin	PRO2000-08
	Structure	J	Axe de joint en colonne	PRO2000-08
	Structure	AP	Axe de pli	
	Structure	Q	Axe de stylolithe	PRO2000-08
	Structure	E	Axe d'étirement	PRO2000-08
	Structure	Α	Axe d'étirement d'objet déformé	PRO2000-08
	Structure	Y	Axe d'étirement plaquage minéral	PRO2000-08
	Structure	M	Axe Minérale primaire (magmatique)	PRO2000-08
	Structure	N	Axe Minérale secondaire (tectonométamorphique)	PRO2000-08
VIA	Structure	LE	Linéation d'étirement	
SIGEOM		L1	Linéation d'intersection	PRO2000-08

÷

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		L2	Linéation d'intersection	PRO2000-08
-	Structure	L3	Linéation d'intersection	PRO2000-08
	Structure		Linéation d'intersection	PRO2000-08
	Structure		Linéation Indéterminée	PRO2000-08
VIA	Structure	LM	Linéation minérale	
	Structure	F	Strie de faille	PRO2000-08
VIA		SG	Strie glaciaire	11102000 00
	Structure	<u>30</u> T	Strie intercouche	PRO2000-08
	Structure	cc		11102000-00
VIA	Structure		Clivage de crénulation	
VIA	Structure	DY	Dyke	
VIA	Structure	FA	Faille	
VIA	Structure	FR	Fracture	
VIA	Structure	LI	Litage	
VIA	Structure	PA	Plan axial	
VIA	Structure	S1	Schistosité S1	
VIA	Structure	S2	Schistosité S2	ļ
VIA	Structure	S3	Schistosité S3	
VIA	Structure	VN	Veine	
VIA	Structure	ZC	Zone de cisaillement	
SIGEOM	Texture	AC	Aciculaire	PRO2000-08
SIGEOM	Texture	AD	Adcumulat	PRO2000-08
SIGEOM		AA	Affleurement caractérisé par le plissement	PRO2000-08
SIGEOM		AT	Agmatitique	PRO2000-08
SIGEOM		AL	Alaskitique	PRO2000-08
SIGEOM		AE	Altéré	PRO2000-08
SIGEOM		AO	Amas arrondis (globulaires)	PRO2000-08
SIGEOM		AB	Amiboïdal(e)	PRO2000-08
SIGEOM		AM	Amygdalaire	PRO2000-08
SIGEOM		AM	Amygdalaire	PRO2000-08
SIGEOM			Anastomosé	PRO2000-08
		AR	Antirapakivi	PRO2000-08
SIGEOM				PRO2000-08
SIGEOM		AP	Aphanitique	
SIGEOM		AY	Apophyse (en)	PRO2000-08
SIGEOM		AS	Arborescent	PRO2000-08
SIGEOM		AU	Autoclastique	PRO2000-08
SIGEOM		XX	Autres	PRO2000-08
SIGEOM		BA	Bancs (en)	PRO2000-08
SIGEOM		BM	Bandes de cimentation	PRO2000-08
SIGEOM		BS	Basal(e)	PRO2000-08
SIGEOM		BE	Birds eyes	PRO2000-08
SIGEOM		BI	Biseau	PRO2000-08
SIGEOM		BL	Blocs (à)	PRO2000-08
SIGEOM	Texture	BU	Bordure / limite de coulée	PRO2000-08
SIGEOM	Texture	BV	Botryoïdal	PRO2000-08
SIGEOM		BO	Boudinage	PRO2000-08
SIGEOM		BC	Brèche à coussins ordinaires isolés	PRO2000-08
SIGEOM		BG	Brèche à coussins peu serrés	PRO2000-08
SIGEOM		BF	Brèche à méga-coussins isolés	PRO2000-08
SIGEOM		BB	Brèche à mini-coussins isolés	PRO2000-08
SIGEOM		BQ	Brèche de coulée / Brèche de lave	PRO2000-08
SIGEOM		BH	Brèche de coussins désagrégés / brisés	PRO2000-08
SIGEOM		BK	Brèche de coussins fragmentés	PRO2000-08
SIGEOM		BN	Brèche d'intrusion	PRO2000-08
SIGEOM		BP	Brèche pyroclastique	PRO2000-08
SIGEOM		BT	Brèche tectonique	PRO2000-08
SIGEOM		BR	Bréchique / Brèche	PRO2000-08
SIGEOW	TEXLUIE	л		age 14 de 20

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		BY	Broyage	PRO2000-08
SIGEOM		CA	Cailloux 4-64 mm	PRO2000-08
SIGEOM		PK	Cailloux alignés «pebble stringers»	PRO2000-08
SIGEOM		CN	Cannelure	PRO2000-08
SIGEOM		CQ	Cataclastique	PRO2000-08
SIGEOM		CE	Cendre (à)	PRO2000-08
SIGEOM		VP	Centre volcanique/ faciès proximal	PRO2000-08
SIGEOM		DN	Cheminée d'alimentation (dyke nourricier)	PRO2000-08
SIGEOM		CV	Cheminée volcanique	PRO2000-08
SIGEOM		CH	Chenal	PRO2000-08
SIGEOM		CD	Chenal d'érosion (à)	PRO2000-08
SIGEOM		CG	Chenalisé	PRO2000-08
SIGEOM		CS	Cisaillé(e)	PRO2000-08
		CIS	Cisaillement	FR02000-00
	Texture	JC	Columnaire/ (joints en colonnes)	PRO2000-08
SIGEOM		CB	Convolutions (à)	PRO2000-08
SIGEOM			S 7	PRO2000-08
SIGEOM		KO		PRO2000-08
SIGEOM		NM	Coulé massive à noyaux saussuritisés	and the second
SIGEOM		CL		PRO2000-08
SIGEOM		NC	Coulée coussinée à noyaux saussuritisés	PRO2000-08
SIGEOM		FZ	Coulée fragmentée	PRO2000-08
SIGEOM		CK	Coulée massive	PRO2000-08
SIGEOM	Texture	CZ	Coulée massive à surface coussinée	PRO2000-08
SIGEOM	Texture	CW	Coulée massive grenue et/ou partie basale grenue de coulée	PRO2000-08
SIGEOM	Texture	CO	Coussiné (coussins)	PRO2000-08
SIGEOM	Texture	CO	Coussiné (coussins)	PRO2000-08
SIGEOM	Texture	XP	Coussins allongés	PRO2000-08
SIGEOM	Texture	FP	Coussins aplatis	PRO2000-08
SIGEOM	Texture	MD	Coussins en molaire	PRO2000-08
SIGEOM		CF	Coussins fragmentés	PRO2000-08
SIGEOM		CI	Coussins isolés	PRO2000-08
SIGEOM		CJ	Coussins jointifs	PRO2000-08
SIGEOM		СТ	Crescumulat	PRO2000-08
SIGEOM		CR	Cristalloblastique	PRO2000-08
SIGEOM			Cristaux (en)	PRO2000-08
SIGEOM		CP	Cryptalguaire	PRO2000-08
SIGEOM		CU	Cumulat (à)	PRO2000-08
SIGEOM		СМ	Cumulite	PRO2000-08
SIGEOM		DS	Cupules («dish structure»)	PRO2000-08
SIGEOM		CY	Cyclique(Cyclicité)	PRO2000-08
SIGEOM		DG	Désagrégés / brisés	PRO2000-08
SIGEOM		DQ	Diabasique	PRO2000-08
SIGEOM		DB	Diablastique	PRO2000-08
SIGEOM		DC	Diaclasé	PRO2000-08
SIGEOM		DR	Direction de courant	PRO2000-08
SIGEOM		DE	Direction d'écoulement de coulés	PRO2000-08
SIGEOM			Discordance	PRO2000-08
SIGEOM		DK		PRO2000-08
			Drusique Dunes	PR02000-08
SIGEOM				PRO2000-08
SIGEOM			Durchbewegung	
SIGEOM		SB	Échappement (structure d')	PRO2000-08
SIGEOM			Écharde	PRO2000-08
SIGEOM			Écoulement (structure d')	PRO2000-08
SIGEOM			Effondrement (structure d')	PRO2000-08
SIGEOM	Iexture	EL	Empreinte de cannelures	PRO2000-08 Page 15 de 20

Liste of abreviations

Source	Domaine		Signification	Référence
SIGEOM	Texture	EC	Empreinte de charge (« load cast»)	PRO2000-08
SIGEOM	Texture	EI	Empreinte d'impact	PRO2000-08
SIGEOM	Texture	EE	En échelon	PRO2000-08
SIGEOM		ES	En festons	PRO2000-0
SIGEOM		EN	Enclave	PRO2000-08
SIGEOM		EM	Encroûtement («crustification»)	PRO2000-08
SIGEOM		EP	Épiclastique	PRO2000-08
SIGEOM		EQ	Équigranulaire	PRO2000-08
SIGEOM		ER	Excroissances	PRO2000-08
SIGEOM		EX	Extrusif (ve)	PRO2000-08
SIGEOM		FJ	Faille intra-formationnelle	PRO2000-0
SIGEOM		FV	Faille synvolcanique	PRO2000-0
SIGEOM		FD	Fente de dessication	PRO2000-08
SIGEOM		FM	Fente de refroidissement	PRO2000-08
SIGEOM		FI	Fibreux (se)	PRO2000-08
SIGEOM		FB	Fibroblastique	PRO2000-08
SIGEOM		FS	Filandré « Flaser »	PRO2000-08
SIGEOM		FN FH	Filons-couches cogénitiques (synvolcaniques)	PR02000-08
SIGEOM		FE	Flammes	PR02000-08
SIGEOM		FE FL	Flué, par fluage - fluidal	PR02000-08
SIGEOM			Fluidal(e) (à structure)	PRO2000-08
			Flûte («flutecast»)	PRO2000-08
SIGEOM				PRO2000-08
SIGEOM		FX	Flûte déformée par surcharge	
SIGEOM		FO		PRO2000-08
SIGEOM		FF		PRO2000-08
SIGEOM		FA	Fracturé(e)	PRO2000-08
SIGEOM		FC	Fractures radiales dans les coussins	PRO2000-08
SIGEOM		FG	Fragmenté	PRO2000-08
SIGEOM		FW	Fragments allongés «monomictes»/monogéniques	PRO2000-08
SIGEOM		FU	Fragments allongés «polymictic»/polygéniques	PRO2000-08
SIGEOM		FQ	Fragments aplatis «monomictic»/monogénique	PRO2000-08
SIGEOM		FK	Fragments aplatis «polymictic»/polygénique	PRO2000-08
SIGEOM		FR	Frites («pencil structure») (en crayon)	PRO2000-08
SIGEOM		GA	Galets (à)(64-256 mm)	PRO2000-08
SIGEOM		GE	Géode	PRO2000-08
SIGEOM		GB	Gloméroblastique	PRO2000-08
SIGEOM		GC	Gloméroclastique	PRO2000-08
SIGEOM		GX	Glomérocristallin(e)	PRO2000-08
SIGEOM	Texture	GH	Gloméroporphyrique	PRO2000-08
SIGEOM	Texture	NR	Gneiss à crayons	PRO2000-08
SIGEOM	Texture	GD	Gneiss droit («straight gneiss»)	PRO2000-08
SIGEOM	Texture	GS	Gneissique	PRO2000-08
SIGEOM		GW	Gradation densimétrique	PRO2000-08
SIGEOM		VG	Gradation granulométrique	PRO2000-08
SIGEOM		GF	Grains fins (à) < 1mm roches ignées	PRO2000-08
SIGEOM		GG	Grains grossiers (à) >5 mm roches ignées	PRO2000-08
SIGEOM		GM	Grains moyens (à) 1-5 mm roches ignées	PRO2000-08
SIGEOM		GT	Grains très fins	PRO2000-08
SIGEOM		GO	Grains très grossiers	PRO2000-08
SIGEOM		GR	Granoblastique	PRO2000-08
SIGEOM		GI	Granoclassement inverse	PRO2000-08
SIGEOM		GJ	Granoclassement inverse suivi de normal	PRO2000-08
SIGEOM		GN	Granoclassement normal	PRO2000-08
SIGEOM		GK	Granoclassement normal suivi d'inverse	PRO2000-08
SIGEOM		GQ	Granoclassique	PRO2000-08
SIGEOM		GU	Granophyrique	PRO2000-08
				Page 16 de 20

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM	Texture	GU	Granules (à) (2-4 mm)	PRO2000-08
SIGEOM	Texture	GP	Graphique	PRO2000-08
SIGEOM	Texture	GV	Griffon	PRO2000-08
SIGEOM		HA	Harrisitic	PRO2000-08
SIGEOM		HE	Hélicitique	PRO2000-08
SIGEOM		HU	Hétéradcumulat	PRO2000-08
SIGEOM		HB	Hétéroblastique	PRO2000-08
SIGEOM		НК	Hétérogène	PRO2000-08
SIGEOM		HG	Hétérogranulaire	PRO2000-08
SIGEOM		HC	Holocristallin(e)	PRO2000-08
SIGEOM		HH	Holohyalin(e)	PRO2000-08
SIGEOM		HL	Hololeucocrate	PRO2000-08
SIGEOM		НМ	Holomélanocrate	PRO2000-08
SIGEOM		HQ	Homéoblastique	PRO2000-08
SIGEOM			Homogène	PRO2000-08
SIGEOM			Homotactique	PRO2000-08
SIGEOM			Hyaloclastites	PRO2000-08
SIGEOM			Hyaloclastites remaniées	PRO2000-08
SIGEOM		the second se	Hyalopilitique	PRO2000-08
SIGEOM			Hyalotuf	PRO2000-08
SIGEOM			Hypidiomorphe	PRO2000-08
			Hypocristallin(e)	PRO2000-08
SIGEOM				
SIGEOM		IM	Imbrication de cailloux, blocs	PRO2000-08
SIGEOM		IP IQ	Imprégnation	PRO2000-08
SIGEOM				PRO2000-08
SIGEOM		IT	Intraclastes (à)	PRO2000-08
SIGEOM		IR	Intraformationnel(le)	PRO2000-08
SIGEOM		IU	Intrusif(ve) / injection	PRO2000-08
SIGEOM		IC	Iridescence	PRO2000-08
SIGEOM			Isolés	PRO2000-08
SIGEOM		JC	Joints en colonnes	PRO2000-08
SIGEOM			Karstique	PRO2000-08
SIGEOM		LU	Labradorescence	PRO2000-08
SIGEOM		LA	Laminaire (laminé)	PRO2000-08
SIGEOM		LC	Laminations convolutées	PRO2000-08
SIGEOM			Laminations cryptalgaires	PRO2000-08
SIGEOM		LQ	Laminations obliques	PRO2000-08
SIGEOM		LO	Laminations ondulantes	PRO2000-08
SIGEOM		LL	Laminations ondulantes lenticulaires	PRO2000-08
SIGEOM		LP	Laminations parallèles	PRO2000-08
SIGEOM		LI	Lapilli (à)	PRO2000-08
SIGEOM		TO	Lapillistone	PRO2000-08
SIGEOM		LT	Lattes (en)	PRO2000-08
SIGEOM		LV	Lave / coulée de lave	PRO2000-08
SIGEOM		LK	Lave en blocs	PRO2000-08
SIGEOM		LF	Lépidoblastique	PRO2000-08
SIGEOM		LX	Leucocrate	PRO2000-08
SIGEOM		LS	Leucosome	PRO2000-08
SIGEOM			Lité(e), stratifié(e)	PRO2000-08
SIGEOM			Lits amalgamés	PRO2000-08
SIGEOM	Texture	LN	Lits d'épaisseur moyenne (10 à 25 cm)	PRO2000-08
SIGEOM	Texture	LG	Lits épais (>25 cm)	PRO2000-08
SIGEOM	Texture	LD	Lits lenticulaires	PRO2000-08
SIGEOM	Texture	LM	Lits minces (1-10 cm)	PRO2000-08
			Laba	
SIGEOM	lexture	LB	Lobe	PRO2000-08

•

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM	Texture	MP	Mégaporphyrique	PRO2000-08
SIGEOM		MX	Mélanocrate	PRO2000-08
SIGEOM	Texture	MS	Mélanosome	PRO2000-08
SIGEOM		MK	Mésocrate	PRO2000-08
SIGEOM		MF	Mésocumulat	PRO2000-08
SIGEOM		ME	Métamorphisé	PRO2000-08
SIGEOM		ML	Miarolitique	PRO2000-08
SIGEOM		MT	Micritique	PRO2000-08
SIGEOM		MB	Microbrèche	PRO2000-08
SIGEOM		MI	Microlitique	PRO2000-08
SIGEOM		MR	Microporphyrique	PRO2000-08
SIGEOM		MU	Minicoussins (à)	PRO2000-08
SIGEOM		MZ	Mobilisat	PRO2000-08
SIGEOM		MM	Monogénique «Monomictic»	PRO2000-08
SIGEOM		MO	Mosaïque	PRO2000-08
SIGEOM		MN	Mylonitique	PRO2000-08
SIGEOM			Myrmékitique	PRO2000-08
SIGEOM			Nébulitique	PRO2000-08
SIGEOM		NE	Nématoblastique	PRO2000-08
SIGEOM		NS	Néosome	PRO2000-08
SIGEOM		NY	Noyaux	PRO2000-08
SIGEOM		OC	Ocellaire	PRO2000-08
SIGEOM		OE	Oeillé(e)	PRO2000-08
SIGEOM		01	Olïkocryst (à)	PRO2000-08
SIGEOM		00	Oolitique	PRO2000-08
SIGEOM		OP	Ophitique	PRO2000-08
SIGEOM		OR	Orbiculaire	PRO2000-08
SIGEOM		OU	Orthocumulat	PRO2000-08
SIGEOM		PS	Paléosome	PRO2000-08
SIGEOM		PE	Paléosurface d'érosion	PRO2000-08
SIGEOM		PA	Panidiomorphe	PRO2000-08
SIGEOM		PV	Patron d'interférence	PRO2000-08
SIGEOM		PG	Pegmatitique	PRO2000-08
SIGEOM		PL	Pellets (à)	PRO2000-08
SIGEOM		PD	Péloïdes	PRO2000-08
SIGEOM			Perlitique	PRO2000-08
SIGEOM			Peu serrés (loosely packed)	PRO2000-08
SIGEOM			Phanéritique	PRO2000-08
SIGEOM			Phénocristique	PRO2000-08
SIGEOM			Plis ptygmatiques	PRO2000-08
SIGEOM			Plutonique	PRO2000-08
SIGEOM			Poecilitique	PRO2000-08
SIGEOM			Poeciloblastique	PRO2000-08
SIGEOM		PM	Polygénique /«polymictic»	PRO2000-08
SIGEOM			Ponce	PRO2000-08
SIGEOM			Porphyre	PRO2000-08
SIGEOM			Porphyrique	PRO2000-08
SIGEOM			Porphyroblastique	PRO2000-08
SIGEOM			Porphyroclastique	PRO2000-08
SIGEOM			Prismatique	PRO2000-08
SIGEOM			Protoclastique	PRO2000-08
SIGEOM			Pyroclastique	PRO2000-08
SIGEOM			Radeaux (en)	PRO2000-08
SIGEOM			Rapakivique	PRO2000-08
SIGEOM	Texture I	RG	Régolite	PRO2000-08

Page 18 de 20

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		RL	Remplacement	PRO2000-08
SIGEOM		RF	Réniforme	PRO2000-08
SIGEOM		RE	Réticulé(e)	PRO2000-08
SIGEOM		RC	Rides de courant	PRO2000-08
SIGEOM		RP	Rides de plage	PRO2000-08
SIGEOM		RM	Rill mark(s)	PRO2000-08
SIGEOM		RI	Rip-up clast(s)	PRO2000-08
SIGEOM		RQ	Ruban de quartz	PRO2000-08
SIGEOM		RU	Rubané(e)	PRO2000-08
SIGEOM		RA	Rubanement concentrique	PRO2000-08
SIGEOM		LJ	Rubanement de diffusion («Liesegang rings»)	PRO2000-08
SIGEOM		RS	Rubanement symétrique	PRO2000-08
SIGEOM		RT	Rubanement tectonique	PRO2000-08
SIGEOM		SD	Saccaroïdale (granoblastique)	PRO2000-08
SIGEOM		sc	Schisteux	PRO2000-08
SIGEOM		SU	Schlieren	PRO2000-08
SIGEOM		SR	Scoriacé(e)	PRO2000-08
		SV	shatter cone	PRO2000-08
SIGEOM		SV	Slump	PRO2000-08
SIGEOM				PRO2000-08
SIGEOM		SM SP	Sommital(e)	PRO2000-08
SIGEOM			Sphérolitique	
SIGEOM		SX	Spinifex (à)	PRO2000-08
SIGEOM		SN	Stratifications / laminations obliques planaires	PRO2000-08
SIGEOM		SQ	Stratifications / laminations obliques tangentielles	PRO2000-08
SIGEOM		SF	Stratifications entrecroisées defosse	PRO2000-08
SIGEOM		ST	Stratifié(e) / stratiforme	PRO2000-08
SIGEOM		SG	Streaky mafiques en trait	PRO2000-08
SIGEOM		SI	Strie	PRO2000-08
SIGEOM		SK	Stromatic	PRO2000-08
SIGEOM		SU	Stromatolitique	PRO2000-08
SIGEOM		DW	Structure «durchbewegung »	PRO2000-08
SIGEOM		ET	Structure de percement («piercement»)	PRO2000-08
SIGEOM	Texture	PW	Structure en peigne («comb»)	PRO2000-08
SIGEOM	Texture	SY	Stylolites	PRO2000-08
SIGEOM		SO	Subophitique	PRO2000-08
SIGEOM	Texture	SE	Surface d'érosion	PRO2000-08
SIGEOM	Texture	TA	Tabulaire	PRO2000-08
SIGEOM	Texture	TT	Talus (de)	PRO2000-08
SIGEOM	Texture	TE	Tectonique	PRO2000-08
SIGEOM		YH	Tectonique hétéroclastique	PRO2000-08
SIGEOM		YL	Tectonite en L	PRO2000-08
SIGEOM		YS	Tectonite en L/S	PRO2000-08
SIGEOM		YZ	Tectonite en S	PRO2000-08
SIGEOM		YM	Tectonite homoclastique	PRO2000-08
SIGEOM		TF	Tracesfossiles (trous de vers, etc.)	PRO2000-08
SIGEOM		TR	Trachytique / trachytoïde	PRO2000-08
SIGEOM		TP	Trempe (de)	PRO2000-08
SIGEOM		TM	Tuf à blocs	PRO2000-08
SIGEOM		TZ	Tuf à blocs et tuf à lapilli	PRO2000-08
SIGEOM		TD	Tuf à cendre	PRO2000-08
SIGEOM		TX	Tuf à cristaux	PRO2000-08
SIGEOM			Tuf à lapilli	PRO2000-08
SIGEOM			Tuf à lapilli et tuf à blocs	PRO2000-08
SIGEOM		тс	Tuf cherteux	PRO2000-08
SIGEOM		TG	Tuf graphiteux	PRO2000-08
SIGEOM			Tuf lithique	PRO2000-08
SIGEON	Texture			Page 19 de 20

Liste of abreviations

Source	Domaine	Code	Signification	Référence
SIGEOM		TS	Tuf soudé	PRO2000-08
SIGEOM	Texture	TU	Tufacé	PRO2000-08
SIGEOM	Texture	ТВ	Turbidite (voir guide des géofiches)	PRO2000-08
SIGEOM		VA	Variolitique	PRO2000-08
SIGEOM	Texture	VE	Vesiculaire	PRO2000-08
SIGEOM	Texture	VI	Vitreux(se)	PRO2000-08
SIGEOM	Texture	VO	Volcanique	PRO2000-08
SIGEOM		VC	Volcanoclastites	PRO2000-08
SIGEOM	Texture	XB	Xénoblastique	PRO2000-08
SIGEOM	Texture	XM	Xénomorphe	PRO2000-08
SIGEOM	Texture	ZS	Zone de cisaillement	PRO2000-08
SIGEOM	Texture	ZC	Zone de contact	PRO2000-08
SIGEOM	Texture	ZD	Zone de déformation	PRO2000-08
SIGEOM	Texture	ZF	Zone de faille	PRO2000-08
SIGEOM	Texture	ZM	Zone minéralisée	PRO2000-08
SIGEOM	Texture	ZR	Zone rouillée	PRO2000-08
SIGEOM	Texture	AI	Amas irréguliers, agrégats	PRO2000-08
SIGEOM	Texture	OL	Colloforme	PRO2000-08
SIGEOM	Texture	CC	Concrétion(s) nodules	PRO2000-08
SIGEOM	Texture	DT	Dendritique	PRO2000-08
SIGEOM	Texture	DI	Disséminé	PRO2000-08
SIGEOM	Texture	FN	Filonien	PRO2000-08
SIGEOM	Texture	RB	Framboïdal	PRO2000-08
SIGEOM	Texture	ID	Idiomorphe	PRO2000-08
SIGEOM	Texture	IG	Intergranulaire	PRO2000-08
SIGEOM	Texture	LE	Lenticulaire	PRO2000-08
SIGEOM	Texture	MA	Massif(ve)	PRO2000-08
SIGEOM	Texture	NO	Nodulaire	PRO2000-08
VIA	Texture	SSM	Semi-Massif	
SIGEOM	Texture	SW	Stockwerk	PRO2000-08
SIGEOM	Texture	SJ	Stratoïde («stratabound»)	PRO2000-08
SIGEOM	Texture	SS	Stringer	PRO2000-08
SIGEOM	Texture	PY	Structure en cocarde (crustification, «cockade»)	PRO2000-08
VIA	Texture	VN	Veine	

APPENDIX 3. DESCRIPTION OF OUTCROPS AND BOULDERS, TRIESTE PROJECT

INFORMATION AVAILABLE UPON REQUEST SUBMITTED TO VIRGINIA MINES INC.

info@minesvirginia.com

Toll free number: 800 476-1853

.

APPENDIX 4.ROCK SAMPLES LIST, TRIESTE PROJECT

INFORMATION AVAILABLE UPON REQUEST SUBMITTED TO VIRGINIA MINES INC.

info@minesvirginia.com

Toll free number: 800 476-1853

APPENDIX 5. DESCRIPTION OF CHANNEL SAMPLING

INFORMATION AVAILABLE UPON REQUEST SUBMITTED TO VIRGINIA MINES INC.

info@minesvirginia.com

Toll free number: 800 476-1853

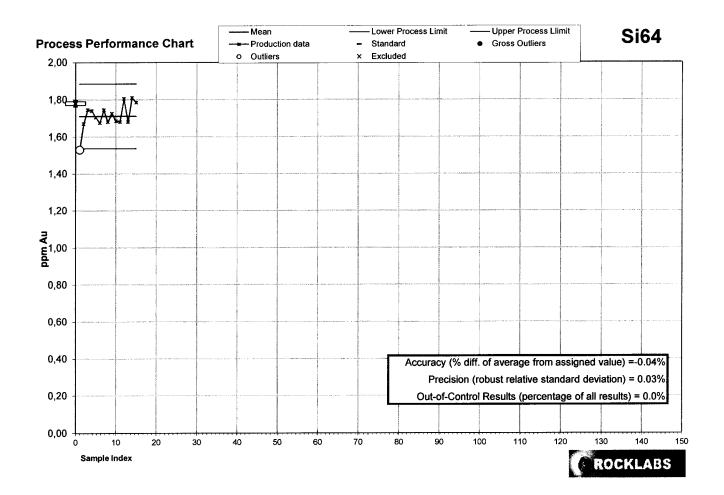
APPENDIX 6. QUALITY CONTROLS, ASSAYS

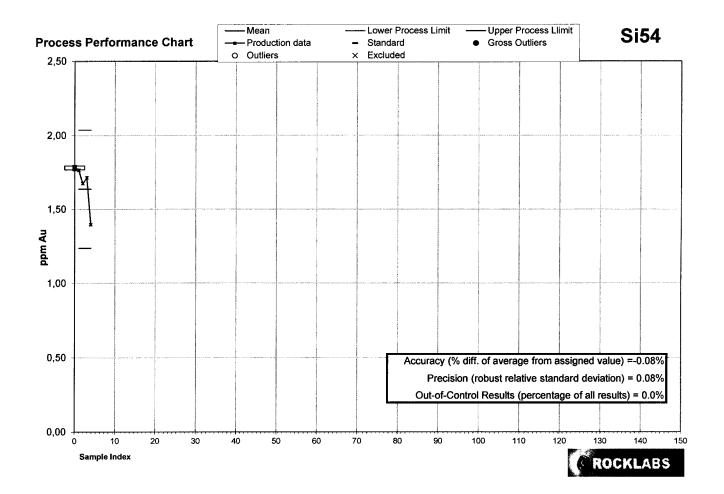
de da p	QC-QA Blank samples, meste project, Summer 2012					
sample	certificate	Au_ppm	Ag_ppm	Cu_ppm	Zn_ppm	Comment
271712	VO12201565	<0,005	<0,2	<1	9	Ok
271732	VO12198899	<0,005	<0,2	1	27	Ok
271752	VO12200523	<0,005	<0,2	1	14	Ok
271772	VO12200524	<0,005	<0,2	3	24	Ok
271792	VO12200525	<0,005	<0,2	9	30	Ok
271812	VO12187277	<0,005	0,2	<1	9	Ok
271832	VO12187275	<0,005	<0,2	1	9	Ok
271852	VO12211102	<0,005	<0,2	<1	14	Ok
272712	VO12163271	0,005	<0,2	<1	9	Ok
272732	VO12162449	<0,005	0,2	3	17	Ok
272752	VO12163273	<0,005	<0,2	<1	62	Ok
272772	VO12171061	<0,005	<0,2	<1	28	Ok
272792	VO12171063	<0,005	<0,2	1	12	Ok
273112	VO12163272	0,006	<0,2	1	11	Ok
273132	VO12163110	<0,005	<0,2	<1	16	Ok
273152	VO12171060	<0,005	<0,2	<1	21	Ok
273312	VO12175517	<0,005	0,3	1	56	Ok
273332	VO12175518	<0,005	<0,2	<1	11	Ok
273352	VO12186289	0,007	<0,2	<1	16	Ok
273372	VO12187271	0,005	0,2	3	19	Ok
273392	VO12187272	<0,005	<0,2	1	18	Ok
273412	VO12187270	<0,005	0,3	3	8	Ok
273432	VO12187273	<0,005	<0,2	1	11	Ok
273452	VO12187274	<0,005	<0,2	1	14	Ok
273472	VO12187276	<0,005	<0,2	1	8	Ok
274012	VO12198896	<0,005	<0,2	2	10	Ok
274032	VO12198897	<0,005	<0,2	1	16	Ok
274052	VO12198898	<0,005	0,2	<1	11	Ok
274072	VO12201288	<0,005	<0,2	1	17	Ok
274092	VO12200527	0,122	<0,2	1	17	Failure

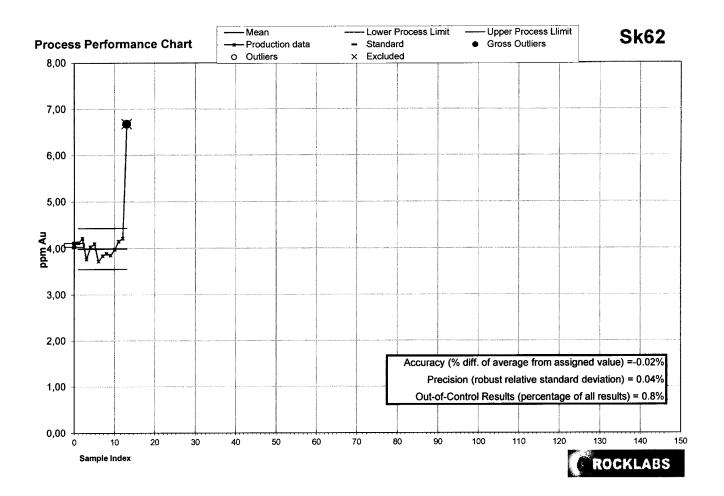
QC-QA Blank samples, Trieste project, Summer 2012

-

No tag	Certificate	type	Au_ppm	Ag_ppm	Cu_ppm	Status
271719	VO12201565	Expected duplicate result	-0,005	-0,2	47	
271720	VO12201565	271719	-0,005	-0,2	48	
ат. 17	A Construction of the second s		0	0	-1	ok
271739	VO12198899	Expected duplicate result	-0,005	-0,2	46	
271740	VO12198899	271739	-0,005	-0,2	46	
			0	0	0	ok
271759	VO12200523	Expected duplicate result	0,039	0,8	374	
271760	VO12200523	271759	0,053	1,1	460	
			-0,014	-0,3	-86	ok
271779	VO12200524	Expected duplicate result	-0,005	-0,2	11	
271780	VO12200524	271779	-0,005	-0,2	10	
			0	0	1	ok
271799	VO12200525	Expected duplicate result	-0,005	0,2	23	
271800	VO12200525	271799	-0,005	0,2	24	
			0	0	-1	ok
271819	VO12187277	Expected duplicate result	-0,005	-0,2	33	
271820	VO12187277	271819	-0,005	0,2	33	
			0	-0,4	0	ok
271839	VO12187275	Expected duplicate result	0,008	-0,2	37	
271840	VO12187275	271839	0,011	-0,2	43	- -
e de la companya de l La companya de la comp			-0,003	0	-6	ok
271859	VO12211102	Expected duplicate result	0,039	-0,2	39	
271860	VO12211102	271859	0,03	-0,2	7	
			0,009	0	32	ok
272719	VO12163271	Expected duplicate result	1,55	-0,2	165	
272720	VO12163271	272719	2,26	0,3	163	100 A.S.
			-0,71	-0,5	2	Failure
272739	VO12162449	Expected duplicate result	0,07	-0,2	94	
272740	VO12162449	272739	-0,005	-0,2	92	
			0,075		2	ok
272759	VO12163273	Expected duplicate result	-0,005		19	
272760	VO12163273	272759	-0,005		17	2)
			0	0	2	ok
272779	VO12171061	Expected duplicate result	0,006	0,3	25	
272780	VO12171061	272779	0,007	0,3		
			-0,001	0		ok
273119	VO12163272	Expected duplicate result	0,007	-0,2	75	
273120	VO12163272	273119	0,008	-0,2	<u>. 72</u>	
			-0,001	0	3	ok
273139	VO12163110	Expected duplicate result	0,006	-0,2	115	
273140	VO12163110	273139	0,009			
			-0,003	0	-21	
273159	VO12171060	Expected duplicate result	0,02	-0,2	62	
273160	VO12171060	273159	0,009			


QC-QA. Duplicate results, Trieste project, Summer 2012


No tag	Certificate	type	Au_ppm	Ag_ppm		Status
			0,011	0	2	ok
273319	VO12175517	Expected duplicate result	0,038	0,3	125	
273320	VO12175517	273319	0,052	0,3	121	
			-0,014	0	4	ok
273339	VO12175518	Expected duplicate result	0,015	-0,2	35	
273340	VO12175518	273339	0,006	-0,2	36	
			0,009	0	-1	ok
273359	VO12186289	Expected duplicate result	0,008	-0,2	46	
273360	VO12186289	273359	0,005	-0,2	46	
			0,003	0	0	ok
273379	VO12187271	Expected duplicate result	0,007	-0,2	35	
273380	VO12187271	273379	0,011	-0,2	35	
			-0,004	0	0	ok
273399	VO12187272	Expected duplicate result	-0,005	-0,2	48	
273400	VO12187272	273399	-0,005	-0,2	48	
			0	0	0	ok
273419	VO12187270	Expected duplicate result	-0,005	-0,2	48	-
273420	VO12187270	273419	-0,005	-0,2	49	1
			0	0	-1	ok
273439	VO12187273	Expected duplicate result	-0,005	-0,2	22	
273440	VO12187273	273439	-0,005	-0,2	22	
			0	0	0	ok
273459	VO12187274	Expected duplicate result	0,01	-0,2	31	
273460	VO12187274	273459	0,005	-0,2	29	
			0,005	0	2	ok
273479	VO12187276	Expected duplicate result	0,007	-0,2	18	
273480	VO12187276	273479	0,01	-0,2	18	
			-0,003	0	0	ok
274019	VO12198896	Expected duplicate result	0,005	-0,2	32	
274020	VO12198896	274019	0,005	-0,2	37	
			0	0	-5	ok
274039	VO12198897	Expected duplicate result	-0,005	-0,2	50	
274040	VO12198897	274039	-0,005	-0,2	48	
	`		0	0	2	ok
274059	VO12198898	Expected duplicate result	-0,005	0,3	93	
274060	VO12198898	274059	-0,005	0,3	89	
			0	0	4	ok
274079	VO12201288	Expected duplicate result	0,159	-0,2	32	
274080	VO12201288	274079	0,122	-0,2	27	
			0,037	0	5	ok
274099	VO12200527	Expected duplicate result	0,013	0,3	52	
274100	VO12200527	274099	0,016	0,3	52	
a tige	1 년 1 백 월 종종 등		-0,003	0	0	ok


.

		QC-QA	. Certified ma				mer 2012		-r
Sample	Certificate	Reference	Certified gold	Standard	3x Standard	ALS-Chemex	Difference	Difference	Comments
		material	concentration	deviation	deviation	result (ppm)	ppm	%	
		type							
272705	VO12163271	SI54	1,78	0,034	0,102	1,765	0,015	0,84	Ok
272725	VO12162449	SI54	1,78	0,034	0,102	1,675	0,105	5,90	Failure
272745	VO12163273	SI54	1,78	0,034	0,102	1,715	0,065	3,65	Ok
272765	VO12171061	SI54	1,78	0,034	0,102	1,395	0,385	21,63	Failure
271705	VO12201565	Si64	1,78	0,042	0,126	1,53	0,25	14,04	Failure
271745	VO12200523	Si64	1,78	0,042	0,126	1,67	0,11	6,18	Ok
273105	VO12163272	Si64	1,78	0,042	0,126	1,745	0,035	1,97	Ok
273145	VO12171060	Si64	1,78	0,042	0,126	1,74	0,04	2,25	Ok
273305	VO12175517	Si64	1,78	0,042	0,126	1,705	0,075	4,21	Ok
273345	VO12186289	Si64	1,78	0,042	0,126	1,675	0,105	5,90	Ok
273365	VO12187271	Si64	1,78	0,042	0,126	1,745	0,035	1,97	Ok
273405	VO12187270	Si64	1,78	0,042	0,126	1,68	0,1	5,62	Ok
273445	VO12187274	Si64	1,78	0,042	0,126	1,725	0,055	3,09	Ok
273465	VO12187276	Si64	1,78	0,042	0,126	1,685	0,095	5,34	Ok
274005	VO12198896	S164	1,78	0,042	0,126	1,68	0,1	5,62	Ok
274025	VO12198897	SI64	1,78	0,042	0,126	1,805	-0,025	1,40	Ok
274045	VO12198898	SI64	1,78	0,042	0,126	1,68	0,1	5,62	Ok
274065	VO12201288	SI64	1,78	0,042	0,126	1,81	-0,03	1,69	Ok
274305	VO12200527	SI64	1,78	0,042	0,126	1,785	-0,005	0,28	Ok
272785	VO12171063	Sk62	4,075	0,042	0,126	4,12	-0,045	1,10	Ok
271765	VO12200524	Sk62	4,075	0,14	0,42	4,21	-0,135	3,31	Ok
271785	VO12200525	Sk62	4,075	0,14	0,42	3,77	0,305	7,48	Ok
271805	VO12187277	Sk62	4,075	0,14	0,42	4,03	0,045	1,10	Ok
271825	VO12187275	Sk62	4,075	0,14	0,42	4,1	-0,025	0,61	Ok
271845	VO12211102	Sk62	4,075	0,14	0,42	3,72	0,355	8,71	Ok
273125	VO12163110	SK62	4,075	0,14	0,42	3,84	0,235	5,77	Ok
273165	VO12175516	SK62	4,075	0,14	0,42	3,89	0,185	4,54	Ok
273325	VO12175518	Sk62	4,075	0,14	0,42	3,85	0,225	5,52	Ok
273385	VO12187272	Sk62	4,075	0,14	0,42	3,98	0,095	2,33	Ok
274085	VO12200527	SK62	4,075	0,14	0,42	4,15	-0,075	1,84	Ok
274205	VO12200526	Sk62	4,075	0,14	0,42	4,21	-0,135	3,31	Ok
273425	VO12187273	Sk62	4,075	0,14	0,42	6,68	-2,605	63,93	Failure

.

P.O Box 18-142, Glen Innes 1743 Auckland, New Zealand. P 64.9.634.7696 F 64.9.634.6896 E sales@rocklabs.com www.rocklabs.com

© ROCKLABS

Reference Material Si64

Recommended Gold Concentration: 1.780 µg/g 95% Confidence Interval: +/- 0.013 µg/g

The above values apply only to product in jars or sachets which have an identification number within the following range: $265\ 719 - 268\ 281$.

Prepared and Certified By:	Malcolm Smith BSc, FNZIC Rocklabs Reference Materials 40 Oakford Park Crescent, Greenhithe Auckland 0632 NEW ZEALAND Email: <u>Malcolm@MSRML.co.nz</u> Telephone: +64 9 444 3534
Date of Certification:	9 March 2012
Certificate Status:	Original
Available Packaging:	This reference material has been packed in wide- mouthed jars that contain 2.5 kg of product. The contents of some jars may be subsequently repacked into sealed polyethylene sachets.
Origin of Reference Material:	Feldspar minerals, basalt and iron pyrites with minor quantities of finely divided gold- containing minerals that have been screened to ensure there is no gold nugget effect.
Supplier of Reference Material:	ROCKLABS P O Box 18 142 Glen Innes Auckland 1743 NEW ZEALAND Email: <u>reference-materials@rocklabs.com</u> Website: <u>www.rocklabs.com</u>

Certificate of Analysis, ROCKLABS Reference Material Si64. 9 March 2012. Page 1 of 6. World Leaders in Sample Preparation Equipment, Automated Systems and Certified Reference Materials

Description:	The reference material is a light grey powder that has been well mixed and a homogeneity test carried out after the entire batch was packaged into wide-mouthed jars. There is no soil component. The product contains crystalline quartz and therefore dust from it should not be inhaled. The approximate chemical composition is:			
	(Uncertified Values)			
	% SiO2 55.13 Al2O3 16.23			
	Na ₂ O	4.87		
	K ₂ O	4.46		
	CaO	3.65		
	MgO	3.40		
	TiO ₂ MnO	0.94		
	P_2O_5	0.07 0.22		
	Fe_2O_3	4.82		
	Fe	2.7		
	S	3.0		
Intended Use:	This reference material is designed batch of samples analysed and the monitoring and assessment purpos	d to be included with every results plotted for quality		
Stability:	The container (jar or sachet) should not be heated to temperatures higher than 50 °C. Iron pyrites are likely to oxidize in the air but tests have shown that the increase in weight of an exposed reference material of similar matrix, in the Auckland climate, is less than 0.1% per year.			
Method of Preparation:	Pulverized feldspar minerals, basalt rock and barren iron pyrites were blended with finely pulverized and screened gold-containing minerals. Once the powders were uniformly mixed the composite was placed into 2563 wide-mouthed jars, each bearing a unique number. 54 jars were randomly selected from the packaging run and material from these jars was used for both homogeneity and consensus testing.			

Homogeneity Assessment:

An independent laboratory carried out gold analysis by fire assay of 30 g portions, using an AAS finish. Steps were taken to minimize laboratory method variation in order to better detect any variation in the candidate reference material. The contents of six randomly selected jars were compacted by vibration (to simulate the effect of freighting) and five samples removed successively from top to bottom from each jar. In addition, five samples were removed from the last jar in the series. A sample was also removed from the top of each of the 54 jars randomly selected from the 2563 jars in the batch. The results of analysis of the 89 samples (randomly ordered and then consecutively numbered before being sent to the laboratory) produced a relative standard deviation of 1.2 %.

Analytical Methodology:

Once homogeneity had been established, two sub-samples were submitted to a number of well-recognized laboratories in order to assign a gold value by consensus testing. The sub-samples were drawn from the 54 randomly selected jars and each laboratory received samples from two different jars. Indicative concentration ranges were given. All laboratories used fire assay for the gold analysis, with most using an instrument finish and 3 using a gravimetric finish.

Calculation of Certified Value:

Results for gold were returned from 50 laboratories. Statistical analysis to identify outliers was carried out using the principles detailed in sections 7.3.2 - 7.3.4, ISO 5725-2: 1994. Assessment of each laboratory's performance was carried out on the basis of z-scores, partly based on the concept described in ISO/IEC Guide 43-1. Details of the criteria used in these examinations are available on request. As a result of these statistical analyses, nine sets of results were excluded for the purpose of assigning a gold concentration value to this reference material. A recommended value was thus calculated from the average of the remaining n = 41 sets of replicate results. The 95 % confidence interval was estimated using the formula:-

$X \pm ts/\sqrt{n}$

(where X is the estimated average, s is the estimated standard deviation of the laboratory averages, and t is the 0.025 tail-value from Student's t-distribution with n-1 degrees of freedom). The recommended value is provided at the beginning of the certificate in $\mu g/g$ (ppm) units. A summary of the results used to calculate the recommended value is listed on page 4 and the names of the laboratories that submitted results are listed on page 5. The results are listed in increasing order of the individual laboratory averages.

Statistical analysis of the consensus test results has been carried out by independent statistician, Tim Ball.

Summary of Results Used to Calculate Gold Value

.

(Listed in increasing order of individual laboratory averages)

Gold (ppm)					
Sample 1	Sample 2	Average			
1.726	1.702	1.714			
1.723	1.720	1.722			
1.76	1.6845	1.722			
1.733	1.714	1.724			
1.710	1.745	1.728			
1.701	1.754	1.728			
1.741	1.726	1.734			
1.73	1.75	1.740			
1.73	1.76	1.745			
1.73	1.76	1.745			
1.770	1.734	1.752			
1.740	1.770	1.755			
1.731	1.783	1.757			
1.760	1.757	1.758			
1.790	1.740	1.765			
1.76	1.77	1.765			
1.725	1.806	1.766			
1.78	1.76	1.770			
1.76	1.78	1.770			
1.768	1.775	1.772			
1.755	1.790	1.772			
1.773	1.775	1.774			
1.75	1.81	1.780			
1.75	1.79	1.780			
1.780	1.79	1.785			
1.780	1.790	1.789			
1.800	1.794	1.789			
1.790	1.800	1.790			
1.83	1.78	1.805			
1.85	1.78	1.805			
1.82	1.79	1.805			
1.79	1.82	1.803			
1.81	1.81	1.810			
1.809	1.822	1.816			
1.825	1.825	1.825			
1.85	1.80	1.825			
1.84	1.82	1.830			
1.84	1.87	1.855			
1.85	1.86	1.855			
1.859	1.860	1.860			
1.910	1.880	<u>1.895</u>			
Standard d	Average of $41 \text{ sets} = 1.780 \text{ ppm}$ Standard deviation of $41 \text{ sets} = 0.042 \text{ ppm}$				
	d deviation should				
	limits when plottin				
	<i>dividual laboratory</i> standard deviation = 2				
	terval for average = 0				

Certificate of Analysis, ROCKLABS Reference Material Si64. 9 March 2012. Page 4 of 6.

Participating Laboratories

•

Australia	ALS Minerals, Kalgoorlie ALS Minerals, Perth ALS Minerals, Townsville Bureau Veritas Amdel, Adelaide Bureau Veritas Amdel, Kalgoorlie Intertek Genalysis Laboratory Services, Perth SGS Minerals Services, Perth Ultra Trace – Bureau Veritas, Perth
Burkina Faso	ALS Minerals, Burkina Faso Semafo Burkina Faso S.A.
Canada	Acme Analytical Laboratories, Vancouver ALS Minerals, Val d'Or ALS Minerals, Vancouver Loring Laboratories (Alberta) Ltd, Calgary SGS Minerals Services, Lakefield SGS Minerals Services, Vancouver Techni-Lab S.G.B. Abitibi Inc/Actlabs, Québec TSL Laboratories Inc, Saskatoon
Chile	Acme Analytical Laboratories, Santiago ALS Minerals, La Serena
Côte d'Ivoire	Bureau Veritas Mineral Laboratories, Abidjan
Ireland	OMAC Laboratories Ltd
Kyrgyz Republic	Stewart Assay and Environmental Laboratories LLC, Kara-Balta
Mali	ALS Minerals, Bamako
Namibia	Bureau Veritas- Mineral Laboratories, Swakopmund
New Zealand	SGS New Zealand Ltd, Otago SGS New Zealand Ltd, Reefton SGS New Zealand Ltd, Waihi
Peru	ALS Minerals, Lima Inspectorate Services Perú S.A.C., Callao Minera Yanacocha SRL – Newmont, Lima
Romania	ALS Minerals, Rosia Montana
Russia	Irgiredmet Analytical Centre, Irkutsk
South Africa	AB Analytical Laboratory Services, Boksburg ALS Minerals, Modderfontein AngloGold Ashanti, Vaal River Chemical Laboratory - Metallurgy Gold Fields West Wits Analytical Laboratory Performance Laboratories, Allanridge Performance Laboratories, Barberton Performance Laboratories, Randfontein SGS South Africa (Pty) Ltd, Johannesburg
Turkey	Acme Analitik Laboratuar Hizmetleri Ltd, Sirketi ALS Minerals, Izmir
United Kingdom	Inspectorate International, Essex
USA	Acme Analytical Laboratories, Alaska ALS Minerals, Reno Barrick Goldstrike – Met Services Inspectorate, Sparks Newmont Mining Corporation, Carlin Laboratory
Zimbabwe Certificate of Analys	Performance Laboratories, Ruwa sis, ROCKLABS Reference Material Si64. 9 March 2012. Page 5 of 6.

Instructions and Recommendations for Use:

Weigh out quantity usually used for analysis and analyze for total gold by normal procedure. Homogeneity testing has shown that consistent results are obtainable for gold when 30g portions are taken for analysis.

We quote a 95% confidence interval for our estimate of the declared value. This confidence interval reflects our uncertainty in estimating the true value for the gold content of the reference material. The interval is chosen such that, if the same procedure as used here to estimate the declared value were used again and again, then 95% of the trials would give intervals that contained the true value. It is a reflection of how precise the trial has been in estimating the declared value. It **does not** reflect the variability any particular laboratory will experience in its own repetitive testing.

Some users in the past have misinterpreted this confidence interval as a guide as to how different an individual test result should be from the declared value. Some mistakenly use this interval, or the standard deviation from the consensus test, to set limits for control charts on their own routine test results using the reference material. Such use inevitably leads to many apparent out-of-control points, leading to doubts about the laboratory's testing, or of the reference material itself.

A much better way of determining the laboratory performance when analysing the reference material is to accumulate a history of the test results obtained, and plot them on a control chart. The appropriate centre line and control limits for this chart should be based on the average level and variability exhibited in the laboratory's **own** data. This chart will provide a clear picture of the long-term stability or otherwise of the laboratory testing process, providing good clues as to the causes of any problems. To help our customers do this, we can provide a free Excel template that will produce sensible graphs, with intelligently chosen limits, from the customer's own data.

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However ROCKLABS Ltd, Scott Technology Ltd and Tim Ball Ltd accept no liability for any decisions or actions taken following the use of the reference material.

References:

For further information on the preparation and validation of this reference material please contact Malcolm Smith.

Certifying Officer

M. J. Smith

M G Smith BSc, FNZIC

Independent Statistician

in Ball

Tim Ball BSc (Hons)

Certificate of Analysis

Reference Material SK52

Recommended Gold Concentration: 4.107 µg/g 95% Confidence Interval: +/- 0.029 µg/g

The above values apply only to product in jars or sachets which have an identification number within the following range: 199 587 – 201 299.

Prepared and Certified By:	Malcolm Smith BSc, FNZIC Malcolm Smith Reference Materials Ltd 40 Oakford Park Crescent, Greenhithe North Shore City 0632 NEW ZEALAND Email: Malcolm@MSRML.co.nz Telephone: +64 9 444 3534
Date of Certification:	19 April 2010
Certificate Status:	Original
Available Packaging:	This reference material has been packed in wide- mouthed jars that contain 2.5 kg of product. The contents of some jars may be subsequently repacked into sealed polyethylene sachets.
Origin of Reference Material:	Feldspar minerals, basalt and iron pyrites with minor quantities of finely divided gold- containing minerals that have been screened to ensure there is no gold nugget effect.
Supplier of Reference Material:	ROCKLABS Ltd P O Box 18 142 Auckland 1743 NEW ZEALAND Email: sales@rocklabs.com Website: www.rocklabs.com Telephone: +64 9 634 7696
Certificate of Analysis, ROCKLABS	Reference Material SK52, 19 April, 2010. Page 1 of 6.

Description:	The reference material is a light grey powder that has been well mixed and a homogeneity test carried out after the entire batch was packaged into wide-mouthed jars. There is no soil component. The product contains crystalline quartz and therefore dust from it should not be inhaled.			
	The approximate chemical composition is: (Uncertified Values)			
	%			
	SiO ₂	55.09		
	Al_2O_3	16.08		
	Na ₂ O	4.53		
	K ₂ O	4.78		
	CaO	3.51		
	MgO	3.18		
	TiO ₂	0.94		
	MnO	0.07		
	P_2O_5	0.25		
	Fe_2O_3	4.92		
	Fe	2.8		
	S	3.0		
Intended Use:	This reference material is designe batch of samples analysed and the monitoring and assessment purpor	e results plotted for quality		
Stability:	The container (jar or sachet) and i heated to temperatures higher than likely to oxidize in the air but test increase in weight of an exposed matrix, in the Auckland climate, i	n 50 °C. Iron pyrites are s have shown that the reference material of similar		
Method of Preparation:	Pulverized feldspar minerals, basalt rock and barren iron pyrites were blended with finely pulverized and screened gold-containing minerals. Once the powders were unifor mixed the composite was placed into 1713 wide-mouthe jars, each bearing a unique number. 48 jars were random selected from the packaging run and material from these was used for both homogeneity and consensus testing.			

Homogeneity Assessment:

.

An independent laboratory carried out gold analysis by fire assay of 30 g portions, using a gravimetric finish. Steps were taken to minimize laboratory method variation in order to better detect any variation in the candidate reference material.

Homogeneity Assessment continued:

The contents of six randomly selected jars were compacted by vibration (to simulate the effect of freighting) and five samples removed successively from top to bottom from each jar. In addition, five samples were removed from the last jar in the series. A sample was also removed from the top of each of the 48 jars randomly selected from the 1713 jars in the batch. The results of analysis of the 83 samples (randomly ordered and then consecutively numbered before being sent to the laboratory) produced a relative standard deviation of 1.1 %.

Analytical Methodology:

Once homogeneity had been established, two sub-samples were submitted to a number of well-recognized laboratories in order to assign a gold value by consensus testing. The sub-samples were drawn from the 48 randomly selected jars and each laboratory received samples from two different jars. Indicative concentration ranges were given. All laboratories used fire assay for the gold analysis, with most using an instrument finish and some a gravimetric finish.

Calculation of Certified Value:

Results for gold were returned from 43 laboratories. Statistical analysis to identify outliers was carried out using the principles detailed in sections 7.3.2 - 7.3.4, ISO 5725-2: 1994. Assessment of each laboratory's performance was carried out on the basis of z-scores, partly based on the concept described in ISO/IEC Guide 43-1. Details of the criteria used in these examinations are available on request. As a result of these statistical analyses, six sets of results were excluded for the purpose of assigning a gold concentration value to this reference material. A recommended value was thus calculated from the average of the remaining n = 37 sets of replicate results. The 95 % confidence interval was estimated using the formula:-

$X \pm ts/\sqrt{n}$

(where X is the estimated average, s is the estimated standard deviation of the laboratory averages, and t is the 0.025 tail-value from Student's t-distribution with n-1 degrees of freedom). The recommended value is provided at the beginning of the certificate in $\mu g/g$ (ppm) units. A summary of the results used to calculate the recommended value is listed on page 4 and the names of the laboratories that submitted results are listed on page 5. The results are listed in increasing order of the individual laboratory averages.

Statistical analysis of the consensus test results has been carried out by independent statistician, Tim Ball.

Summary of Results Used to Calculate Gold Value

2

(Listed in increasing order of individual laboratory averages)

Gold (ppm)		
Sample 1	Sample 2	Average
3.85	3.84	3.845
3.91	3.94	3.925
3.90	4.03	3.965
3.99	3.98	3.985
4.01	4.00	4.005
4.014	4.019	4.016
4.080	3.983	4.032
4.07	4.06	4.065
4.061	4.071	4.066
4.108	4.041	4.075
4.14	4.01	4.075
4.10	4.06	4.080
4.002	4.185	4.094
4.11	4.08	4.095
4.08	4.11	4.095
4.14	4.05	4.095
4.055	4.135	4.095
4.08	4.11	4.097
4.130	4.088	4.109
4.15	4.08	4.115
4.155	4.082	4.119
4.16	4.08	4.120
4.14	4.15	4.145
4.17	4.14	4.155
4.20	4.11	4.155
4.15	4.16	4.155
4.155	4.175	4.165
4.16	4.17	4.165
4.10	4.25	4.175
4.16	4.20	4.180
4.15	4.22	4.185
4.16	4.22	4.190
4.19	4.20	4.195
4.19	4.22	4.205
4.29	4.13	4.210
4.21	4.26	4.235
4.28	4.28	4.280
Average of 37 sets = 4.107 ppm		
Standard deviation of 37 sets = 0.088 ppm		
Note: this standard deviation should not be used as		
<u>a basis to set control limits when plotting results</u> from an individual laboratory.		
Relative standard deviation = 2.2%		
95% Confidence interval for average = 0.029 ppm		

Participating Laboratories

٠

Australia	ALS Mineral, Kalgoorlie ALS Mineral, Orange ALS Mineral, Perth ALS Mineral, Townsville Amdel Ltd, Adelaide Amdel Ltd, Kalgoorlie Genalysis Laboratory Services, Perth Independent Assay Laboratories, Perth SGS Minerals Services, Perth Standard and Reference Laboratories, Perth Ultra Trace Pty Ltd, Perth
Burkina Faso	ALS Mineral, Burkina Faso
Canada	Acme Analytical Laboratories Ltd, Vancouver ALS Mineral, Val d'Or ALS Mineral, Vancouver Assayers Canada, Vancouver International Plasma Labs Ltd, Richmond Loring Laboratories Ltd, Calgary SGS Mineral Services, Lakefield Techni-Lab S.G.B. Abitibi Inc, Quebec TSL Laboratories Inc, Saskatoon
Chile	Acme Analytical Laboratories Ltd, Santiago ALS Mineral, La Serena
Kyrgyzstan	Stewart Assay and Environmental Laboratories LLC, Kara-Balta
Malaysia	Performance Laboratories, Raub
Mali	ALS Mineral, Bamako
New Zealand	Amdel Ltd, Reefton SGS Minerals Services, Waihi
Peru	ALS Mineral, Lima Inspectorate Services Peru S.A.C., Callao Minera Yanacocha SRL – Newmont, Lima
South Africa	AB Analytical Laboratory Services, Boksburg ALS Mineral, Johannesburg Anglo Research, Johannesburg Goldfields West Wits Analytical Laboratory Performance Laboratories, Allanridge Performance Laboratories, Randfontein SGS South Africa (Pty) Ltd, Johannesburg
UK	Inspectorate International Ltd, Essex
USA	ALS Mineral, Reno Barrick Goldstrike – Met Services Newmont Mining Corporation, Carlin Laboratory Newmont Mining Corporation, Lone Tree Laboratory

Instructions and Recommendations for Use:

Weigh out quantity usually used for analysis and analyze for total gold by normal procedure. Homogeneity testing has shown that consistent results are obtainable for gold when 30g portions are taken for analysis.

We quote a 95% confidence interval for our estimate of the declared value. This confidence interval reflects our uncertainty in estimating the true value for the gold content of the reference material. The interval is chosen such that, if the same procedure as used here to estimate the declared value were used again and again, then 95% of the trials would give intervals that contained the true value. It is a reflection of how precise the trial has been in estimating the declared value. It **does not** reflect the variability any particular laboratory will experience in its own repetitive testing.

Some users in the past have misinterpreted this confidence interval as a guide as to how different an individual test result should be from the declared value. Some mistakenly use this interval, or the standard deviation from the consensus test, to set limits for control charts on their own routine test results using the reference material. Such use inevitably leads to many apparent out-of-control points, leading to doubts about the laboratory's testing, or of the reference material itself.

A much better way of determining the laboratory performance when analysing the reference material is to accumulate a history of the test results obtained, and plot them on a control chart. The appropriate centre line and control limits for this chart should be based on the average level and variability exhibited in the laboratory's **own** data. This chart will provide a clear picture of the long-term stability or otherwise of the laboratory testing process, providing good clues as to the causes of any problems. To help our customers do this more simply for themselves, we can provide a free Excel template that will produce sensible graphs, with intelligently chosen limits, from the customer's own data.

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However ROCKLABS Ltd, Malcolm Smith Reference Materials Ltd and Tim Ball Ltd accept no liability for any decisions or actions taken following the use of the reference material.

References:

For further information on the preparation and validation of this reference material please contact Malcolm Smith.

Certifying Officer

M. G. Smith

M G Smith BSc, FNZIC

Independent Statistician

Tim Ball BSc (Hons)

Certificate of Analysis, ROCKLABS Reference Material SK52, 19 April, 2010. Page 6 of 6.

P.O Box 18-142, Glen Innes 1743 Auckland, New Zealand. P 64 9 634 7696 F 64 9 634 6896 E sales@rocklabs.com www.rocklabs.com

Automated Systems and Certified Reference Materials

Certificate of Analysis

Reference Material SK62

Recommended Gold Concentration: 4.075 µg/g 95% Confidence Interval: +/- 0.045 µg/g

The above values apply only to product in jars or sachets which have an identification number within the following range: $250\ 945 - 253\ 617$.

Prepared and Certified By:	Malcolm Smith BSc, FNZIC Rocklabs Reference Materials 40 Oakford Park Crescent, Greenhithe Auckland 0632 NEW ZEALAND Email: Malcolm@MSRML.co.nz Telephone: +64 9 444 3534
Date of Certification:	19 August 2011
Certificate Status:	Original
Available Packaging:	This reference material has been packed in wide- mouthed jars that contain 2.5 kg of product. The contents of some jars may be subsequently repacked into sealed polyethylene sachets.
Origin of Reference Material:	Feldspar minerals, basalt and iron pyrites with minor quantities of finely divided gold- containing minerals that have been screened to ensure there is no gold nugget effect.
Supplier of Reference Material:	ROCKLABS Ltd P O Box 18 142 Glen Innes Auckland 1743 NEW ZEALAND Email: sales@rocklabs.com Website: www.rocklabs.com
Certificate of Analysis, ROCKLABS Re	ference Material SK62, 19 August 2011. Page 1 of 6. World Leaders in Sample Preparation Equipment.

Description:	The reference material is a light grey powder that has been well mixed and a homogeneity test carried out after the entire batch was packaged into wide-mouthed jars. There is no soil component. The product contains crystalline quartz and therefore dust from it should not be inhaled.	
	The approximate chemical composition is: (Uncertified Values)	
		%
	SiO ₂	54.34
	Al_2O_3	16.11
	Na_2O	4.45
	K ₂ O	4.80
	CaO	3.83
	MgO	3.43
	${ m TiO_2}$	1.00
	MnO	0.07
	P_2O_5	0.26
	Fe_2O_3	5.18
	Fe	2.8
	S	3.0
Intended Use:	This reference material is designed to be included with every batch of samples analysed and the results plotted for quality monitoring and assessment purposes.	
Stability:	The container (jar or sachet) and its contents should not be heated to temperatures higher than 50 °C. Iron pyrites are likely to oxidize in the air but tests have shown that the increase in weight of an exposed reference material of similar matrix, in the Auckland climate, is less than 0.1% per year.	
Method of Preparation:	Pulverized feldspar minerals, basalt rock and barren iron pyrites were blended with finely pulverized and screened gold-containing minerals. Once the powders were uniformly mixed the composite was placed into 2673 wide-mouthed jars, each bearing a unique number. 54 jars were randomly selected from the packaging run and material from these jars was used for both homogeneity and consensus testing.	

Homogeneity Assessment:

An independent laboratory carried out gold analysis by fire assay of 30 g portions, using a gravimetric finish. Steps were taken to minimize laboratory method variation in order to better detect any variation in the candidate reference material. The contents of six randomly selected jars were compacted by vibration (to simulate the effect of freighting) and five samples removed successively from top to bottom from each jar. In addition, five samples were removed from the last jar in the series. A sample was also removed from the top of each of the 54 jars randomly selected from the 2673 jars in the batch. The results of analysis of the 89 samples (randomly ordered and then consecutively numbered before being sent to the laboratory) produced a relative standard deviation of 0.7 %.

Analytical Methodology:

Once homogeneity had been established, two sub-samples were submitted to a number of well-recognized laboratories in order to assign a gold value by consensus testing. The sub-samples were drawn from the 54 randomly selected jars and each laboratory received samples from two different jars. Indicative concentration ranges were given. All laboratories used fire assay for the gold analysis, with most using an instrument finish and 13 using a gravimetric finish.

Calculation of Certified Value:

Results for gold were returned from 44 laboratories. Statistical analysis to identify outliers was carried out using the principles detailed in sections 7.3.2 - 7.3.4, ISO 5725-2: 1994. Assessment of each laboratory's performance was carried out on the basis of z-scores, partly based on the concept described in ISO/IEC Guide 43-1. Details of the criteria used in these examinations are available on request. As a result of these statistical analyses, five sets of results were excluded for the purpose of assigning a gold concentration value to this reference material. A recommended value was thus calculated from the average of the remaining n = 39 sets of replicate results. The 95 % confidence interval was estimated using the formula:-

$X \pm ts/\sqrt{n}$

(where X is the estimated average, s is the estimated standard deviation of the laboratory averages, and t is the 0.025 tail-value from Student's t-distribution with n-1 degrees of freedom). The recommended value is provided at the beginning of the certificate in $\mu g/g$ (ppm) units. A summary of the results used to calculate the recommended value is listed on page 4 and the names of the laboratories that submitted results are listed on page 5. The results are listed in increasing order of the individual laboratory averages.

Statistical analysis of the consensus test results has been carried out by independent statistician, Tim Ball.

Sample 1	Gold (ppm) Sample 2	Average
3.64	3.79	3.715
3.85	3.67	3.760
3.93	3.74	3.835
3.84	3.87	3.855
3.94	3.94	3.940
3.97	3.91	3.940
3.94	3.96	3.950
3.999	3.950	3.975
4.006	3.944	3.975
3.941	4.017	3.979
4.017	4.000	4.009
3.98	4.05	4.015
4.09	3.94	4.015
3.96	4.11	4.035
4.040	4.030	4.035
4.080	4.029	4.055
4.00	4.12	4.060
4.07	4.09	4.080
4.08	4.11	4.095
4.120	4.080	4.100
4.12	4.08	4.100
4.158	4.069	4.114
4.07	4.16	4.115
4.10	4.15	4.125
4.150	4.115	4.133
4.18	4.10	4.140
4.18	4.10	4.140
4.16	4.13	4.145
4.040	4.268	4.154
4.20	4.11	4.155
4.12	4.27	4.195
4.21	4.19	4.200
4.28	4.13	4.205
4.235	4.225	4.230
4.225	4.245	4.235
4.240	4.230	4.235
4.26	4.25	4.255
4.34	4.27	4.305
4.325	4.337	4.331
	Average of 39 sets = 4 eviation of 39 sets = 0	
ote: this stan	dard deviation s	hould not be

Summary of Results Used to Calculate Gold Value (Listed in increasing order of individual laboratory averages)

95% Confidence interval for average = 0.045 ppm

plotting results from an individual laboratory. Relative standard deviation = ⁵3.4 %

Participating Laboratories

Australia	ALS Minerals, Kalgoorlie ALS Minerals, Orange ALS Minerals, Orange ALS Minerals, Perth ALS Minerals, Townsville Amdel – Bureau Veritas, Adelaide Amdel – Bureau Veritas, Kalgoorlie Genalysis Laboratory Services, Perth Independent Assay Laboratories, Perth SGS Minerals Services, Perth Standard and Reference, Perth Ultra Trace – Bureau Veritas, Perth
Burkina Faso	ALS Minerals, Burkina Faso Semafo Burkina Faso S.A.
Canada	Acme Analytical Laboratories, Vancouver ALS Minerals, Val d'Or ALS Minerals, Vancouver Bourlamaque Assay Laboratories, Quebec Loring Laboratories (Alberta) Ltd, Calgary SGS Minerals Services, Vancouver SGS Minerals Services, Lakefield Techni-Lab S.G.B., Québec TSL Laboratories Inc, Saskatoon
Chile	Acme Analytical Laboratories, Santiago ALS Minerals, La Serena
Côte d'Ivoire	Bureau Veritas Mineral Laboratories, Abidjan
Ireland	OMAC Laboratories
Kyrgyz Republic	Stewart Assay and Environmental Laboratories LLC, Kara-Balta
Mali	ALS Minerals, Bamako
New Zealand	SGS Minerals Services, Otago SGS Minerals Services, Waihi
Peru	ALS Minerals, Lima Inspectorate Services Perú S.A.C., Callao Minera Yanacocha SRL – Newmont, Lima
Russia	Irgiredmet Analytical Centre, Irkutsk
South Africa	ALS Minerals, Johannesburg AngloGold Ashanti, Vaal River Chemical Laboratory Goldfields West Wits Analytical Laboratory Performance Laboratories, Randfontein SGS South Africa (Pty) Ltd, Johannesburg
United Kingdom	Inspectorate International, Essex
USA	ALS Minerals, Reno Barrick Goldstrike – Met Services Newmont Mining Corporation, Carlin Laboratory
Zimbabwe	Performance Laboratories, Harare

Instructions and Recommendations for Use:

Weigh out quantity usually used for analysis and analyze for total gold by normal procedure. Homogeneity testing has shown that consistent results are obtainable for gold when 30g portions are taken for analysis.

We quote a 95% confidence interval for our estimate of the declared value. This confidence interval reflects our uncertainty in estimating the true value for the gold content of the reference material. The interval is chosen such that, if the same procedure as used here to estimate the declared value were used again and again, then 95% of the trials would give intervals that contained the true value. It is a reflection of how precise the trial has been in estimating the declared value. It **does not** reflect the variability any particular laboratory will experience in its own repetitive testing.

Some users in the past have misinterpreted this confidence interval as a guide as to how different an individual test result should be from the declared value. Some mistakenly use this interval, or the standard deviation from the consensus test, to set limits for control charts on their own routine test results using the reference material. Such use inevitably leads to many apparent out-of-control points, leading to doubts about the laboratory's testing, or of the reference material itself.

A much better way of determining the laboratory performance when analysing the reference material is to accumulate a history of the test results obtained, and plot them on a control chart. The appropriate centre line and control limits for this chart should be based on the average level and variability exhibited in the laboratory's **own** data. This chart will provide a clear picture of the long-term stability or otherwise of the laboratory testing process, providing good clues as to the causes of any problems. To help our customers do this more simply for themselves, we can provide a free Excel template that will produce sensible graphs, with intelligently chosen limits, from the customer's own data.

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However ROCKLABS Ltd, Scott Technology Ltd and Tim Ball Ltd accept no liability for any decisions or actions taken following the use of the reference material.

References:

For further information on the preparation and validation of this reference material please contact Malcolm Smith.

Certifying Officer

M. J. Smith

M G Smith BSc, FNZIC

Independent Statistician

im Bal

Tim Ball BSc (Hons)

APPENDIX 7. ASSAYS CERTIFICATES

INFORMATION AVAILABLE UPON REQUEST SUBMITTED TO VIRGINIA MINES INC.

info@minesvirginia.com

Toll free number: 800 476-1853