EX-99.1 2 techreport.htm TECHNICAL REPORT CC Filed by Filing Services Canada Inc. 403-717-3898

INDEPENDENT TECHNICAL REPORT

JUANICIPIO SILVER PROJECT

ZACATECAS STATE, MEXICO

MAG SILVER CORP.

Bentall Tower 5
Suite 328, 550 Burrard Street
Vancouver, British Columbia
Canada, V6C 2B5
www.magsilver.com

July 5th, 2006

Prepared By:

  Caracle Creek International Consulting Inc.
Suite 203 - 210 Cedar Street
Sudbury, Ontario, Canada P3B 1M6
+1.705.671.1801

Stephen Wetherup, B.Sc., P.Geo.

Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

TABLE OF CONTENTS

SUMMARY          3 
1.0  INTRODUCTION AND TERMS OF REFERENCE    5 
     1.1    Terminology and Unit Conversion      5 
2.0  PROPERTY DESCRIPTION AND LOCATION    6 
3.0  DISCLAIMER          10 
4.0  ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND 
PHYSIOGRAPHY          10 
5.0  EXPLORATION HISTORY        14 
6.0  GEOLOGICAL SETTING        15 
     6.1    Regional Geology        15 
           6.1.1  District Geology        16 
     6.2    Property Geology        17 
           6.2.1  Mesozoic Rocks        17 
           6.2.2  Tertiary Igneous Rocks        19 
           6.2.3  Upper Tertiary Rocks        21 
           6.2.4  Structural Geology        21 
7.0  DEPOSIT TYPES          23 
     7.1    Epithermal High-Grade Silver Veins      23 
     7.2    Other Deposit types in the District      26 
8.0  MINERALIZATION        27 
9.0  SITE VISIT          29 
10.0  EXPLORATION          31 
11.0  DIAMOND DRILLING        31 
12.0  SAMPLING METHOD AND APPROACH      35 
13.0  SAMPLE PREPARATION, ANALYSES AND SECURITY    35 
14.0  DATA VERIFICATION        36 
15.0  ADJACENT PROPERTIES        38 
16.0  MINERAL PROCESSING AND METALLURGICAL TESTING    38 
17.0  MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE    39 
18.0  INTERPRETATIONS AND CONCLUSIONS      39 
19.0  RECOMMENDATIONS        39 
20.0  REFERENCES          41 

LIST OF FIGURES

Figure 2-1:  Location of the Juanicipio Property  8 
Figure 2-2:  Map of the Juanicipio Property and surrounding claims  9 
Figure 4-1:  Major geological and physiographical belts within Mexico  12 
Figure 4-2: Photo of the northern Sierra Valdecañas range and the Juanicipio Property, looking west. Note the 
silicified ash-flow tuffs (white bluffs) over the buildings to the right or north of the image  13 
Figure 4-3: Photo of typical topography in the Sierra Valdecañas range, with rolling slopes and local resistive 
units (silicified or welded tuffs) that form near vertical bluffs or canyons  13 
Figure 6-1: Geology map of the Juanicipio Property  18 
Figure 6-2:  Photos of silicified tuffaceous rocks and outcrops  20 


Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

1


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Figure 6-3:  Satellite image of the Juanicipio/Fresnillo area depicting major interpreted lineaments  22 
Figure 7-1: Map depicting the San Carlos and El Saucito veins as well as the major mapped structures on the 
Juanicipio Property  24 
Figure 7-2:  Interpretive cross-section of the Fresnillo area (Simmons et al, 1988)  25 
Figure 7-3:  Rift environment low-sulphidation epithermal model (after Corbett, 2004)  25 
Figure 9-1: Photo of drill pad for JI03-01. Collar (cement pad) located between Peter Megaw and Gabriel 
Arredondo who are avoiding the flourishing cacti planted by Mag Silver personnel  29 
Figure 9-2:  Core from the Peñoles drilling on the Juanicipio Property in 2005 with spectacular pyrargyrite+/- 
galena+/-sphalerite banded quartz veins  30 
Figure 9-3: Photo of Mag Silver's core storage yard and representative sections of core laid out  30 
Figure 11-1: Collar location map of the drill holes from the 2003 and 2004 drilling programme  34 

LIST OF TABLES

Table  2-1 :  Juanicipio Property concession summary  6 
Table  5-1 :  Summary of recorded work history on the Juanicipio Property (after Wendt, 2002).  14 
Table  6-1 :  Stratigraphy of the Fresnillo District (modified after Ruvalcaba-Ruiz et al., 1988; Wendt, 2002)  17 
Table  7-1 :  Major Altiplano Ore Deposits (after Megaw and Lopez, 2001)  26 
Table  11-1: Drill hole collar data summary, from the 2003 and 2004 programmes  31 
Table  11-2 :  Highlights from 2003 and 2004 drilling programmes  33 
Table  14-1 :  Comparison of Mag Silver reported assays and CCIC check assays of identical intervals  36 
Table  19-1 :  Proposed exploration budget for second phase of work  40 

APPENDICES

Appendix 1: Author Certificate of Qualifications and Certificate of Authorization

Appendix 2: Glossary of Terms

Appendix 3: Exploration Permits and Mexican Mining Law

Appendix 4: Drill Logs, Vertical Sections and Assays

Appendix 5: Assay Certificates and Analytical Methods from BSI-Inspectorate Laboratories, Reno,
Nevada

Appendix 6: Site Visit Summary Sample Descriptions, Assays, Assay Certificates and Analytical
Methods.

Appendix 7: Exploration of Low Sulphidation Epithermal Vein Systems (Megaw, 2006).
 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

2


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

SUMMARY

Caracle Creek International Consulting Inc. (“CCIC”) was contracted by MAG Silver Corp. (“Mag Silver”), a Toronto Stock Exchange listed company, to conduct a site visit and prepare a NI43-101 compliant Independent Technical Report (the "Report") on their Juanicipio Property (the “Property”) in Zacatecas State, Mexico. This Report is intended to provide an overview of the results from the drilling programmes conducted by Mag Silver in 2003 and 2004, and prior to signing a Joint Venture Agreement with Industrias Peñoles, S.A. de C.V. early in 2005.

The Juanicipio Property is centred at 23o05’1.5”N Latitude, 102o58’21”W Longitude within Zacatecas State, Mexico approximately 70 road kilometres northwest of the state capital of Zacatecas and 6 kilometres west of the mining community of Fresnillo. It is comprised of a single mining concession, Juanicipio I, which was originally granted on August 9, 1999 and at that time was much larger in area encompassing most of the hills west of Fresnillo, the Sierra Valdecañas. Much of the area covered by the original claims were determined to have little exploration potential so Mag-Silver applied and had the Juanicipio I Claim reduced in size from ~28103 Ha to ~7679 Ha, on January 7, 2003. On April 4, 2005, Mag Silver and Industrias Peñoles, S.A. de C.V. (“Peñoles”), operator of the Fresnillo Mine and Mexico’s second largest mining company, entered into a Joint Venture (“JV”) Agreement with regard to the exploration of the Juanicipio Property and the costs incurred.

The only significant work programme completed previous to Mag Silver’s involvement was by Minera Sunshine de Mexico from 2000 to 2001. This work was contracted to IMDEX Inc. and was designed to evaluate the entire 28,000 ha Juanicipio Property (prior to reduction) and then develop drill targets. This work developed several potential areas that were identified as having Fresnillo-style mineralization potential: (1) northeast corner of the Sierra Valdecañas range; (2) Santa Rosa in the southwest corner of the range; (3) near the Cesantoni Kaolinite pit; and, (4) the Piedras Kaolinite Mine. The latter three target areas were deemed to have limited potential. All but the Santa Rosa area are encompassed by the reduced 7879 ha, Juanicipio I concession. Minera Sunshine had obtained drilling permits to test the highest priority targets but due to lack of funding was not able to begin the drilling phase and returned the Property to Ing. Martin Sutti.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

3


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

The Juanicipio Property lies on the western flank of the Central Altiplano in Mexico, just east of the Sierra Madre Occidental ranges. Basement rocks underlying the western Altiplano are a late Palaeozoic to Mesozoic assemblage of marine sedimentary and submarine volcanic rocks belonging to the Guerrero Terrane, that are overlapped by a Jura-Cretaceous epicontinental marine and volcanic arc sequence which in the Fresnillo area is represented by the Proaño and Chilitos Formations. The late Cretaceous to early Tertiary Laramide Orogeny folded and thrust faulted the basement rocks in the entire area and preceded the emplacement of mid-Tertiary plutons and related dykes and stocks.

The Juanicipio Property is underlain by mid-Tertiary felsic volcanic rocks that overlie Cretaceous greywacke likely belonging to the Proaño Group, which host the high-grade Ag (Au) mineralized veins in the Fresnillo Deposit. A large advanced argillic alteration zone occurs within the felsic volcanic rocks and indicates the presence of a large epithermal system on the Property.

Within this region and district, epithermal silver veins are the most dominant deposit type with such world-class examples as Pachuca, Zacatecas, Fresnillo, and Guanajuato. Of immediate interest are the Fresnillo Deposit and the recently discovered high-grade Ag (Au) veins the El Saucito and San Carlos Veins.

Prior to drilling in 2003 and 2004 no silver, gold or base metal mineralization had been documented on the Juanicipio Property, only the extensive advanced argillic alteration and silicification of the Tertiary volcanic and volcaniclastic rocks, which alluded to mineralization at depth. Drilling by Mag Silver during their 2003 and 2004 drilling campaign directed toward Natural Source Audio Magnetotellurics delineated structures changed this when it encountered significant high-grade Ag (Au) and Pb-Zn-Ag mineralization at depth. The silver rich veins encountered in holes JI03-01 and a wedge off of hole JI03-01 (JI03-01A) averaged ~6.9 g/t Au, 467 g/t Ag, 0.1% Zn over 2.99 m including 10.9 g/t Au and 689 g/t Ag over 2.00 m and 0.7 g/t Au, 401 g/t Ag, 0.1% Pb over 1.7 m respectively.

As the 2003 and 2004 drilling confirmed the presence of high-grade epithermal Ag (Au) veins on the Juanicipio Property, the next phase of work should involve continued drilling and possibly more Natural Source Audio Magnetotellurics geophysical surveying. The first Natural Source Audio Magnetotellurics surveys managed to identify several structures some of which appear to have been intersected by the drilling and were mineralized. A larger

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

4


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

survey may discover additional structures that have yet to be identified and will almost certainly produce more drill targets. In all likelihood, to reasonably assess the Juanicipio Property at least 20-30 additional drill holes will be required to bring it to the advanced exploration and the definition drilling stage which should cost ~US$2,815,000.

1.0   INTRODUCTION AND TERMS OF REFERENCE

Caracle Creek International Consulting Inc. was contracted by MAG Silver Corp., a Toronto Stock Exchange listed company, to conduct a site visit and prepare a NI43-101 compliant Independent Technical Report on their Juanicipio Property in Zacatecas State, Mexico. This Report is intended to provide an overview of the results from the drilling programmes conducted by Mag Silver in 2003 and 2004, and prior to signing a Joint Venture Agreement with Industrias Peñoles, S.A. de C.V. early in 2005.

The author, Stephen Wetherup, visited the Property on February 17th and 18th, 2006 where he was shown all of the drill collar locations, most of the major geological features and units, and toured the core cutting, logging, and storage facilities. Representative check samples were taken from intervals of reported mineralized zones in two different holes and most of the significant mineralized zones were examined.

Most of the information used in the preparation of this Report has been provided by Mag Silver and its representatives, including a previous NI43-101 report written for Mega Capital Investments Inc. (November, 2002), by Pincock, Allen and Holt, and titled “The Geology and Exploration Potential of the Juanicipio Property, Fresnillo District, Zacatecas Mexico”.

1.1 TERMINOLOGY AND UNIT CONVERSION

Before ~1980 in Canada the Imperial system was the primary system of measure and length often expressed in feet and tenths of feet, volume is expressed as cubic feet, mass expressed as short tons, and nickel and copper grades are generally expressed as percent. The precious metals grades are generally expressed as ounce per ton but may also be in parts per billion or parts per million. Conversions from the Imperial system to the SI or metric system used in Canada are provided below and quoted where practical. Metals and minerals acronyms in this report conform to mineral industry accepted usage and are listed in Appendix 2. Unless otherwise noted, dollars are expressed in Canadian currency (CAD).

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

5


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Conversion factors utilized in this report include: 1 troy ounces/ton = 34.29 gram/ton; 0.029 troy ounces/ton = 1 gram/ton; 1 troy ounce/tonne = 31.10 gram/tonne; 0.032 troy ounces/tonne = 1 gram/tonne; 1 gram = 0.0322 troy ounces; 1 troy ounce = 31.104 grams; 1 pound = 0.454 kilograms; 1 foot = 0.3048 metres; 1 mile = 1.609 kilometres; 1 acre = 0.405 hectares; and, 1 sq mile = 2.59 square kilometres. The term gram/tonne or g/t is expressed as “gram per tonne” where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion). Other abbreviations may include ppb = parts per billion; ppm = parts per million; opt = ounce per short ton; g/t=grams per tonne, Moz = million ounces; Mt = million tonne; t = tonne (1000 kilograms); and, st = short ton (2000 pounds). A glossary of geological terms is provided in Appendix 2.

2.0   PROPERTY DESCRIPTION AND LOCATION

The Juanicipio Property is centred at 23o05’1.5”N Latitude, 102o58’21”W Longitude within Zacatecas State, Mexico approximately 70 road kilometres northwest of the state capital of Zacatecas and 6 kilometres west of the mining community of Fresnillo (Figure 2-1). It is comprised of a single mining concession, Juanicipio I, which was originally granted on August 9, 1999 and was much larger in area encompassing most of the hills west of Fresnillo, the Sierra Valdecañas (Figure 2-2). Several companies have optioned or held the ground before Minera Lagartos S.A. de C.V. optioned the claims on July 31, 2002. Mega Capital Investments, now MAG Silver Corp., purchased 98% of Minera Lagartos S.A. de C.V. on August 1, 2002 and has subsequently reduced the size of the Juanicipio concession, purchased all of the mineral rights to the area including any residual royalties, and converted the “exploration” concession to an “exploitation concession. A summary of the concession information is provided in Table 2-1.

Table 2-1: Juanicipio Property concession summary.

Claim Name  Title #  Date Issued  Expiry Date  Area (ha)  Owners 
Juanicipio I  Tx 226339  Dec. 13, 2005  Dec. 12, 2055  7879.2106  Minera Lagartos (100%) 
 

Prior to December 2005, under Mexican Mining Law, Mexican companies and individuals may claim mineral exploration concessions in available areas and may hold them for a period of 6 years, provided that they pay the applicable taxes and provide proof of exploration work. In the case of Juanicipio this 6 year period ended as of August 2005 and Mag Silver was required to and completed the conversion from “exploration concession” to “exploitation

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

6


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

concession”. Since, December 2005 the Mexican Government has done away with the “exploration” and “exploitation” designations and now all claims are “mining concessions” that are good for 50 years (and renewable for 50 more) provided the work and taxes requirements are kept up to date.

Mag Silver is now obligated to maintain their exploitation concession by paying the applicable taxes (~$3500.00 CAD every 6 months), proof of work done, statistical, technical and economic data on any mining operations. The amount of work and taxes required by the Mineral Resources Council is updated annually to maintain constant peso amounts. Appendix 3 contains a summary of the Mexican Mining Law as provided by the Mexican Ministry of the Economy web site.

On April 4, 2005, Mag Silver and Industrias Peñoles, S.A. de C.V. (“Peñoles”), operator of the Fresnillo Mine and Mexico’s second largest mining company, entered into a Joint Venture (“JV”) Agreement with regard to the exploration of the Juanicipio Property and the costs incurred. Below is a summary of the agreement from Mag Silver’s web site:

“The principal features of the agreement are:

1.      Peñoles can earn a 56% interest in Juanicipio upon completion of a US$5,000,000 exploration program on or before the end of year 4 of the agreement.
 
2.      During the first year, Peñoles shall incur an obligatory work commitment expenditure of US$750,000. Year 1 expenditures must include a minimum of 3,000 metres of diamond drilling.
 
3.      A flexible and staged exploration program is included in the contract. Exploration work will be supervised by a technical committee comprised of 3 representatives from Peñoles and 2 from MAG Silver. Peñoles and MAG Silver are obliged to share their information in the district. Part of the geological and exploration work will be conducted by MAG consultants and in-house personnel.
 
4.      Exploration results from Juanicipio will be published as appropriate on an ongoing basis, with both companies to agree on the content.
 
5.      Peñoles will subscribe for US$500,000 in MAG shares, at a market based price on signing and an additional US$500,000 in MAG shares, at a market based price, if the contract continues into the second year.”
 

Ecological concerns on the Property are minimal as the area is generally too rugged for habitation and there have not been any significant concerns raised by the local population or during drill permitting in the past. Moderate rehabilitation measures such as stabilizing slopes and planting local flora in areas of disturbance has been sufficient to satisfy the Ecological Authorities. There is no surface water for exploration or mining activities but an abundance of

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

7






Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

ground water exists and the ownership of mineral rights generally allows access to ground water as needed.

A few cave paintings are located on the Property but many of them have been vandalized. The local authorities are aware of their existence and have not considered them to be a concern to exploration operations; hence drill permitting has not been impeded due to their existence.

3.0  DISCLAIMER

This Independent Technical Report was prepared for MAG Silver Corp. by Stephen Wetherup, B.Sc., P.Geo. (the “Author”), as a representative of Caracle Creek International Consulting Inc., headquartered in Canada. The information, conclusions and recommendations contained herein are based on data provided by Mag Silver and it s representatives, and appear to be of sound quality. The author is unaware of significant technical data other than that provided.

The Author is not responsible for any omissions in, and does not guarantee, and makes no warranty as to the accuracy of, information received from outside sources. The Author has made all reasonable efforts to outline any land tenure or environmental issues relating to Mag Silver’s projects and disclaims all responsibility for missing or inaccurate property information. The Author has conducted this independent technical assessment in accordance with the methodology and format outlined in National Instrument 43-101, companion policy NI43-101CP and Form 43-101F1.

4.0  ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Physiographically, the Juanicipio Property lies within the Mexican Altiplano or “Mesa Central” region. This region is flanked to the west by the Sierra Madre Occidental and to the east by the Sierra Madre Oriental mountain ranges (Figure 4-1). The Altiplano in this region is dominated by broad alluvium filled plains between rolling to rugged mountain ranges and hills with average elevations of approximately 1700 m above mean sea level (AMSL) with local mountain ranges reaching up to 3000 m AMSL. The climate is continental, warm and arid with temperatures ranging from 0oC to 41oC, averaging ~21oC and <1000 mm of annual precipitation. Subsequently, vegetation is sparse consisting mainly of grasses, low thorny

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

10


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

shrubs and cacti, with scattered oak forests at higher elevations. Surface water is rare but ground water is readily available.

The Juanicipio Project area is located over the north-eastern portion of the Sierra Valdecañas range. Elevations on the Juanicipio Property range from 2350 m to 2900 m AMSL. The terrain is generally moderate to rugged with many deeply incised canyons cutting otherwise moderate to steep mountain slopes and mesas (Figures 4-2 and 4-3). On the Property, there is very little human habitation although there are a few villages and Ejidos (agricultural collectives) along the fringes of the Property to the north and east. As there are existing mines in the area, the people living around the Juanicipio Property are knowledgeable about mining and exploration and are generally supportive of possible increased employment opportunities. Road access to the northern portion of the Property is excellent due to recently built drilling trails built by Mag Silver Corporation in spite of the rugged terrain. Most areas are still not accessible by vehicle but road building and permitting road building is obviously possible and does not appear to be problematic.

The Juanicipio Property is located about 6 kilometres along paved and good condition dirt roads from the mining town of Fresnillo. Fresnillo has a population of ~75,000 and services the Fresnillo Mine run by Peñoles. As such, it offers a substantial professional work force experienced in mining and mining related activities in addition to most other supplies and services. Access to Fresnillo to the nearest international airport in Zacatecas (~55 km south) is via paved highway. Zacatecas has a population of >1,000,000, is the capital of Zacatecas State and acts as the mining centre for the area. Fresnillo and Zacatecas are also serviced by rail (Figure 2-1).

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

11




Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Figure 4-2: Photo of the northern Sierra Valdecañas range and the Juanicipio Property, looking west. Note the silicified ash-flow tuffs (white bluffs) over the buildings to the right or north of the image.

Figure 4-3: Photo of typical topography in the Sierra Valdecañas range, with rolling slopes and local resistive units (silicified or welded tuffs) that form near vertical bluffs or canyons.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

13


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

5.0   EXPLORATION HISTORY

The most recent recorded exploration work on the Juanicipio Property was in 1999 when the Property was staked. Previous to this it was undoubtedly prospected by numerous individuals due to its proximity to the Fresnillo Mine (~6 km’s) which was first discovered in 1515

(Church, 1907). Peñoles apparently also evaluated the area previous to 1999 (Megaw, pers.comm., 2006) and had drilled several holes to the northeast of the Property between 1997

and 2001 (Wendt, 2002). This work was likely as a result of their recent discovery the San Carlos Vein which extends west from the Fresnillo area. Table 5-1 summarizes the recorded work completed on the Juanicipio Property.

Table 5-1: Summary of recorded work history on the Juanicipio Property (after Wendt, 2002).

Year  Company or Owner  Work Completed/Activity 
1999  Juan Antonio Rosales  Staked the Juanicipio I Claim (28,000 ha) 
1999  Ing. Martin Sutti  Purchased Property 
1999  Minera Sunshine  Optioned Property 
2000-2001  Minera Sunshine   1:50,000 and 1:5000 scale mapping, Natural Source Audio 
    Magnetotellurics geophysical surveying, drill permitting 
2001  Minera Sunshine  Returned Property to Martin Sutti 
2002  Minera Lagartos  Options Property and re-filed drill permit 
2002  Mega Capital Inv. (Mag Silver)  Purchases Minera Lagartos 
2003  Mag Silver Corp.  Reduces the Juanicipio I claim to 7879.2106 ha 

Minera Sunshine optioned the Juanicipio Property from Ing. Martin Sutti and paid a “finder’s fee” to IMDEX Inc./Minera Cascabel S.A. de C.V. This “finder’s fee” contract was dissolved when the option was returned to Ing. Martin Sutti. However, the only significant work programme completed previous to Mag Silver Corporation’s involvement was by Minera Sunshine de Mexico from 2000 to 2001. This work was contracted to IMDEX Inc. and was designed to evaluate the entire 28,000 ha Juanicipio Property (prior to reduction; Table 5-1) and then develop drill targets. This work is detailed in the report Megaw and Ramirez, 2001 and is summarized below.

Work began with the geological evaluation of the Property by geological mapping at the 1:50,000 scale accompanied by interpretation of the structural fabrics, volcanic rock distribution and facies, and detailing mineralization and alteration styles. LandSat image analysis and black and white air photo analysis as well as rock chip and geochemical sampling were conducted to augment and enhance the geological mapping. From this first phase of exploration, areas that were indicative for the presence of Fresnillo-style high grade silver mineralization at depth were chosen to conduct further detailed work. This detailed

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

14


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

work consisted of 1:5000 scale geological mapping, LandSat interpretation, NSAMT (Natural Source Audio Magnetotellurics) or MT geophysics and outcrop geochemistry. Data from the second phase of exploration was then compared to published data on the Fresnillo deposits in an effort to find similar targets or possibly strike continuations into the Juanicipio Property from the Fresnillo area.

Ultimately, several potential areas were identified as having Fresnillo-style mineralization potential (1) northeast corner of the Sierra Valdecañas range, (2) Santa Rosa in the southwest corner of the range (3) near the Cesantoni Kaolinite pit, and (4) the Piedras Kaolinite Mine. The latter three target areas were deemed to have limited potential. All but the Santa Rosa area are encompassed by the reduced 7879 ha, Juanicipio I concession. Minera Sunshine had obtained drilling permits to test the highest priority targets but due to lack of funding was not able to begin the drilling phase and returned the Property to Ing. Martin Sutti.

6.0  GEOLOGICAL SETTING

6.1 REGIONAL GEOLOGY

The Juanicipio Property lies on the western flank of the Central Altiplano in Mexico, just east of the Sierra Madre Occidental ranges (Figure 4-1). Basement rocks underlying the western Altiplano are a late Palaeozoic to Mesozoic assemblage of marine sedimentary and submarine volcanic rocks belonging to the Guerrero Terrane (Simmons, 1991) that were obducted/overthrust onto older Palaeozoic and Precambrian continental rocks during the early Jurassic. These were then overlapped by a Jura-Cretaceous epi-continental marine and volcanic arc sequence which in the Fresnillo area is represented by the Proano and Chilitos Formations (Simmons, 1991; Wendt 2002). Finally, the late Cretaceous to early Tertiary Laramide Orogeny folded and thrust faulted the basement rocks the entire area and preceded the emplacement of mid-Tertiary plutons and related dykes and stocks (Ruvalcaba-Ruiz and Thompson, 1988). Mesozoic marine rocks are host to the San Nicolas, VMS deposit and Francisco I. Madero Sedex deposit (Wendt, 2002).

Unconformably overlying the Mesozoic basement rocks in the western Altiplano are units from the late Cretaceous to Tertiary, Sierra Madre Occidental magmatic arc (Figure 4-1). These rocks consist of a lower assemblage of late Cretaceous to Tertiary volcanic, volcaniclastic, conglomerate and locally limestone rocks, the “lower volcanic complex” and a

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

15


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Tertiary (~25-45 Ma) “upper volcanic supergroup” of caldera related, rhyolite ash-flow tuffs and flows. Eocene to Oligocene intrusions occur throughout the Altiplano and are related to the later felsic volcanic event. Locally, these two units are separated by an unconformity (Ruvalcaba-Ruiz and Thompson, 1988; Wendt, 2002).

A late NE-SW extensional tectonic event accompanied by major strike-slip fault movement affected the Altiplano starting ~35 Ma. This extension was most intense during the Miocene and developed much of the basin and range topography currently exhibited in the area. Subsequent erosion of the ranges has covered most of the basins/valleys, where Fresnillo is located, with extensive calcrete cemented alluvium material.

6.1.1 District Geology

The Fresnillo District’s lowest stratigraphic unit is the early Cretaceous, greywacke and shale units of the Proaño Group (Table 6-1). The Proaño Group is broken into two formations the “lower greywacke” Valdecañas Formation comprised of thinly bedded greywacke and shale and the “upper greywacke” Plateros Formation comprised of carbonaceous and calcareous shale at the base grading to immature sandstone units (Ruvalcaba-Ruiz and Thompson, 1988).

Confusion as to the stratigraphic positioning of the over-lying limestone units, called the Cerro Gordo and Fortuna units in the Fresnillo District, and the Chilitos Formation volcanic and volcaniclastic rocks occurs, likely due to Laramide thrust faulting. Regionally, the Cerro Gordo and Fortuna Limestone units appear to be the stratigraphic equivalents of the Cuestra del Cura Formation and are probably early Cretaceous in age and overlie the Proaño Group clastic sedimentary rocks (Megaw and Lopez, 2001). In which case, the Chilitos Formation volcanic and volcaniclastic rocks are likely late Cretaceous in age and represent the earliest phase of volcanism identified in the area, possibly correlative to the base of the “lower volcanic complex” of the Sierra Madre volcanic arc.

Overlying the Chilitos Formation are Tertiary volcanic rocks, the Fresnillo Formation (>29 Ma) conglomerate, welded rhyolitic ash-flow tuff and flow domes, later (<29 Ma) conglomerate, rhyolitic ash-flow tuff and finally upper Tertiary olivine basalt flows.

Within this stratigraphy a mid-Tertiary quartz-monzonite stock/dyke (~32.4 Ma) intruded in the Fresnillo Mine area and is attributed with the introduction of Ag-Pb-Zn mineralized skarn and argillic alteration within surrounding greywacke and calcareous units.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

16


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Table 6-1: Stratigraphy of the Fresnillo District (modified after Ruvalcaba-Ruiz et al., 1988; Wendt, 2002)

Per.  Age Group  Fm. Local  Thickness Rock Type Assoc. min/ 
    Name    Name    alt 

Q 

Holocene        1-250 m Alluvium  None 
Pleistocene           
Tertiary Miocene-           
  Pliocene      Basalt  100 m Olivine basalt  None 
          Conglomerate,   
  Eocene-      Altamira  400 m welded rhyolite   None 
  Miocene      Volcanics  ash-flow tuff,   
          volarenites   
   Eocene     Quartz  - Quartz-  Ag-Pb-Zn 
        monzonite  monzonite  skarn 
   Paleocene-    Fresnillo  Linares 400 m Conglomerate,   
  Eocene       Volcanics  welded rhyolite Veins, 
           ash-flow tuff,  advanced 
           flow domes, argillic alt.,
            volarenite  silicification 
Cretaceous Late     Cuestra del   Cerro Gordo   300 m Limestone   Replacement 
      Cura   and veins  
      Fortuna   300 m  Limestone Replacement
           and veins
  Early  Proaño  Plateros  Upper 250 m  Calcareous Veins 
        Greywacke   greywacke and   
           shale  
          Calcareous 50 m Calcareous  Veins and
       shale  shale  replacement
      Valdecañas  Lower 700 m  Greywacke  Veins 
        Greywacke     

6.2 PROPERTY GEOLOGY

Geological mapping on the Juanicipio Property was conducted by IMDEX Inc./Minera Cascabel S.A. de C.V. on behalf of Minera Sunshine from 2000 to 2001. The results of this mapping are detailed in a company report by Megaw and Lopez, 2001 and are summarized below (Figure 6-1).

6.2.1 Mesozoic Rocks

The oldest rocks observed in the Juanicipio area are fragments of greywacke in dumps on the Cerro Colorado area south of the Property and presumably belong to the Proaño Group. Otherwise, the oldest rocks observed in outcrop are calcareous shale and andesitic volcaniclastic rocks of the Chilitos Formation at the base of Linares Canyon. They are highly deformed and sheared with local boudinage and dip shallowly to moderately northeast.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

17




Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

The Chilitos Formation’s upper contact is an irregular unconformity to the overlying Tertiary volcanic and volcaniclastic rocks. Drilling in 2002 and 2003 intersected significant sections of the Chilitos and Proano Formations, including polymictic intermediate volcanic breccias with exhalite layers.

6.2.2 Tertiary Igneous Rocks

Tertiary igneous rocks are divided into two units, the Linares and Altamira volcanic assemblages which are separated by an unconformity.

Linares Volcanic Package

The lower volcanic assemblage is informally named the Linares volcanic package by Megaw and Lopez, 2001. It consists of volcaniclastic sedimentary units, welded and non-welded crystal lithic tuff, flow breccia and rhyolite flow domes. The basal unit is composed of 5-20 m of epiclastic volarenites and arkoses overlain by 20-100 m of variably welded, rhyolite to dacite, composite ash-flow tuff that appears to be similar to Fresnillo Formation volcanic rocks and may be correlative (Megaw and Lopez, 2001). This unit generally hosts the intense silicification “sinter”, advanced argillic alteration (kaolinite-alunite) and iron-oxide alteration found on the Juanicipio Property (Figure 6-2). Textural variation and LandSat interpretation within this unit suggests several eruptive centres (calderas) for these volcanic rocks in the Sierra Valdecañas Range.

Overlying the ash-flows is a well bedded volarenite layer and then 100-150 m of welded ash-flow tuff that are less silicified than the lower unit. Locally, several rhyolite domes occur between Linares canyon and the Cesantoni Kaolinite Mine (Figure 6-1).

The Linares volcanic rocks are block-faulted along NNW trending faults with shallow to moderate southwest dips. Silicification appears to post date the faulting as the faults do not appear to cut or displace silicified units (Megaw and Lopez, 2001).

Altamira Volcanic Package

Megaw and Lopez, 2001 also describe and informally name the Altamira volcanic package after the tallest peak in the area Cerro Altamira where the thickest section of these volcanic rocks outcrop.

 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

19


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 


Figure 6-2 (a): Photo of drill pad JI04-09 within a north-south oriented canyon on the Juanicipio Property. The near vertical rock bluffs are dominantly Linares welded ash-flow tuff that has undergone advanced argillic alteration, hematization and/or silicification (see photos b and c). Looking south with truck and geologists for scale (Peter Megaw and Gabriel Arredondo).


Figure 6-2 (b): Photo of silicified and hematite flooded crystal tuff, with a pencil for scale.


Figure 6-2 (c): Photo of advanced argillic alteration highlighted by alunite veinlets and silicification within a volcaniclastic unit (agglomerate?), with a pencil for scale.

 


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

These volcanic rocks overlie the Linares volcanic package across an angular unconformity overlain by a 20-50 m thick layer of well bedded conglomerate and coarse volarenite. Some fragments of silicified Linares volcanic rocks occur within the conglomerate. Overlying these clastic rocks is a 20-350 m thick section of welded rhyolite to rhyodacite ash-flow tuff. Several caldera complexes have been identified within this package. As this unit is post-alteration and presumably post-mineralization and does not appear to contain any alteration it is of little economic interest.

6.2.3 Upper Tertiary Rocks

These rocks are composed of olivine basalt flows that locally overlie the felsic mid-Tertiary volcanic and volcaniclastic rocks on the Property.

6.2.4 Structural Geology

Regional satellite image interpretation suggests that the Sierra Valdecañas range is a topographically high block that is bounded by several major orthogonal NE and NW structures (Figure 6-3). The most notable of these in the > 200 km long Fresnillo strike-slip Fault and its parallel structure the San Acacio-Zacatecas Fault to the east of the Juanicipio. Also, it appears that the San Acacio-Zacatecas structure may traverse the northeast corner of the Juanicipio Property (Figure 6-3) and coincides with much of the silicification which occurs in this area of the Property.

On the Juanicipio Property the dominant structural features are (1) 340 to 020 or “N-S” structures, (2) 290 to 310 trending steeply dipping faults, and (3) lesser 040 to 050 structures. From field observations the N-S structures appear to be steeply dipping normal faults that cut and down-drop blocks of silicified tuff, especially in the vicinity of Linares Canyon (Figure 6-1). More important to the silicification appears to be the 290 to 310 trending steeply to moderately dipping faults. These faults occur where silicification and advanced argillic alteration is most intense and may have served as major hydrothermal fluid pathways. NSAMT surveys on the Juanicipio Property appear to confirm the presence of these NW trending structures and were the primary drill targets for the 2003 and 2004 drilling programme.

 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

21



Figure 6-3: Satellite image of the Fresnillo-Zacatecas area with interpreted linear features superimposed. Note the right angle northern termination of the Sierra Valdecañas range (outlined by a dashed black line) bounded by a NE and a NW structure. The NW trending structure could be the converged San Acacio-Zacatecas Fault Zone a parallel splay of the main Fresnillo Fault Zone.


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

7.0   DEPOSIT TYPES

Within the immediate proximity, Peñoles has been mining and discovering new high-grade Ag (+/-Au) veins, such as the Santo Niño, El Saucito and San Carlos Veins that occur south and west of Fresnillo and extend north-westward in the general direction of the Juanicipio Property. Considering this, it is clear that this type of epithermal high-grade Ag (Au) mineralized veins is the primary exploration target.

7.1 EPITHERMAL HIGH-GRADE SILVER VEINS

Within this region and district, epithermal silver veins are the most dominant deposit type with such world-class examples as Pachuca, Zacatecas, Fresnillo, and Guanajuato to name a few. Of immediate interest are the Fresnillo Deposit and the recently discovered high-grade Ag (Au) veins the El Saucito and San Carlos Veins (Figure 7-1). The veins currently being mined by Peñoles may or may not extend directly onto the Juanicipio Property but parallel en-echelon structures certainly do and as suggested by Simmons, et al (1988) they may host similar style alteration and intrusions (Figure 7-2).

In the Santo Niño Vein the high-grade silver mineralization (averaging 769 g/ton Ag, 0.56 g/ton Au, 0.99% Zn, 0.5% Pb, 0.03% Cu; Gemmel et al, 1988) is hosted in a single fault structure that locally bifurcates or is separated into en-echelon offset structures. It is between 0.5 to 4 m wide, averaging 2.5 m wide, and extends for over 2.5 km’s. Typically in these veins, the high-grade Ag (Au) zone is constrained in elevation within the vein structure to up to 500 m vertically, or between 180 to 750 m depths (Garcia, et al, 1991), below which the veins becomes dominated by base-metal sulphides and progressively lower in precious metal content (Garcia et al, 1991). A model for the formation of the Fresnillo fissure veins was proposed by authors such as Buchanan (1981) and modified and incorporated into the low-sulphidation epithermal model over the last 20 years (e.g. Corbett, 2002; Corbett and Leach, 1998; Hedenquist, et al, 1996, Simmons et al, 1988; etc…). The low-sulphidation epithermal model predicts that the Fresnillo epithermal veins: (1) formed in rifting or tensional environments; (2) formed along normal or strike-slip fault structures; (3) are mineralogically zoned vertically; (4) have the highest precious metal zones within boiling horizons (likely related to paleo-water tables); and, (5) are in faults that diffuse as they near the surface and are accompanied with intense acid-sulphate alteration (advanced argillic and silicification) that

 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

23





Figure 7-2: Schematic cross-section of the Fresnillo region (after Simmons, et al., 1988). Note their suggestion that a similar system to Fresnillo may be covered by the Tertiary volcanic rocks in the Sierra Valdecañas area.


Figure 7-3: Schematic cross-section of a typical rift related epithermal low-sulphidation system (after Corbett, 2004). The high-grade Ag (Au) mineralization in the Fresnillo area occurs below where the fault structure bifurcates (“horse-tails”) in the “fissure-vein” zone well below the volcanic rocks and the advanced-argillic alteration assemblages. Generally the alteration style associated with the fissure veins is typified by illite (brown zone) grading outward to propylitic alteration.


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

cap the systems (Figure 7-3). Appendix 7 contains a summary paper describing the epithermal low-sulphidation model in more detail.

Hence, the predominance of similarly oriented structures as the Fresnillo veins and the pervasive silicification and advanced argillic alteration observed by Megaw and Lopez (2001) suggests that a similar style vein system may occur at depth beneath the Juanicipio Property.

7.2 OTHER DEPOSIT TYPES IN THE DISTRICT

The region contains several other deposit types such as Carbonate Replacement Deposits (e.g. San Martin, Charcas), Volcanogenic Massive Sulphide deposits (San Nicolas), Sedex (Francisco I. Madero) and Stockwork deposits (Real de Angeles) (Wendt, 2002; Table 7-1). These other deposit types are generally hosted within the Mesozoic rock units that underlie the Tertiary volcanic rocks.

Table 7-1: Major Altiplano Ore Deposits (after Megaw and Lopez, 2001)

      Deposit  Tonnage Tonnage   Average Grade     
#  District  State  Type  Produced Reserves Au ppm  Ag ppm  Cu%  Zn%  Pb% 
  San Martin-               
1  Sabinas  ZAC  CRD  40 + M 30 M tr  125  1  3.8  0.5 
  Concepcion               
2  del Oro  ZAC  CRD  40 + M 8 M+ <1.5  275  0.2-2.3  12.8  5.8 
3  Charcas  SLP  CRD  35 M 12 M+   67  0.26  4.5  0.32 
4  Fresnillo  ZAC  E-Vein  50 + M 10 + 3-0.6  685-280  0.02-  0.5-3.0  0.6-3.0 
            0.3     
5  Velardeña  DUR  CRD  22 M 8 M <1.5  156  to .4  5.2  3.8 
6  Catorce  SLP  CRD, E-Vein  10 + M .5 M tr  80  tr  6  10 
7  La Negra  QRO  CRD  7 M 2 M   184  0.2  2.3  1.2 
8  Zimapan  HID  CRD  3.5 + M 1 M   173  1.2  4  2 
9  Mapimi  DUR  CRD  6 M none 3.7  475  mod  high  15.8 
  Asientos/               
10  Tepezala  AGS  CRD, E-Vein  6 M min 2.5 M+ 0.5  150-600  0.2-3.5  5  2.5 
  Cerro San               
11  Pedro  SLP  CRD  5 M 56 M (Au) 0.57-30  22-325  4  9  5 
  La Paz/               
12  Matehuala  SLP    4 M ? 12 M 0.5  500  0.2-1.4  5  7 
13  Chalchihuites  ZAC    2 M ? 1.5 M 1  350  <0.3  3  2.5 
  Francisco I               
A  Madero  ZAC  Sedex ?  minor 20 M+ tr  60  1.5  6  1.5 
  Real de               
B  Angeles  ZAC  Stockwork  90 M none   80    0.9  1 
C  San Nicolas  ZAC  VMS  minor 72 M 0.5  30  1.35  2.3   

CRD = Carbonate Replacement Deposit 
E-Vein = Epithermal Vein 
VMS = Volcanogenic Massive Sulphide

 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

26


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

The presence of possibly exhalite related sphalerite-galena layers within the Mesozoic rocks in drill core suggest VMS style mineralization may occur in the area and continued drilling beneath the Tertiary volcanic rocks into the Mesozoic package exploring for epithermal veins may encounter further evidence of VMS and possibly carbonate replacement mineralization.

8.0   MINERALIZATION

Prior to drilling in 2003 and 2004 no silver, gold or base metal mineralization had been documented on the Juanicipio Property, only the extensive advanced argillic alteration and silicification of the Tertiary volcanic and volcaniclastic rocks, which alluded to mineralization at depth. Drilling by Mag Silver Corporation during their 2003 and 2004 drilling campaign directed toward NSAMT delineated structures changed this when it encountered significant high-grade Ag (Au) and Pb-Zn-Ag mineralization at depth.

Mineralization observed in the drill core consists of either base metal sphalerite-galena veins or precious metal, banded or brecciated quartz-pyrargyrite-acanthite-polybasite-galena-sphalerite veins (Figure 8-1). Alteration in the shale or greywacke host rock is limited to silicification, weak pyritization, and weak clay (smectite/chlorite?) alteration. Within a metre of the veins silicification and disseminated sulphide minerals increase significantly (generally pyrite-sphalerite-galena).

The silver rich veins encountered in holes JI03-01 and a wedge off of hole JI03-01 (JI03-01A) averaged ~6.9 g/t Au, 467 g/t Ag, 0.1% Zn over 2.99 m including 10.9 g/t Au and 689 g/t Ag over 2.00 m and 0.7 g/t Au, 401 g/t Ag, 0.1% Pb over 1.7 m respectively. These veins display several stages of brecciation and quartz sealing, local rhythmic microcrystalline quartz-pyrargyrite banding on the millimetre scale and open-space cox-comb textures and vugs. In hole JI03-01, the drill encountered a sizeable void probably about 1-1.5 m in width when it reached the mineralized vein which demonstrates the extensional nature of these structures. Figure 8-1 shows some of the textures observed in the high-grade silver mineralized zones. Of particular interest is the amount of gold contained in these intersections (6.8 g/t and 0.7 g/t) as well as in the Pb-Zn veins as gold is not common in the veins near Fresnillo and when present (Santo Niño Vein) is usually low (i.e. <0.5 g/t Au).

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

27


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Figure 8-1: Quartz-pyrargyrite vein from hole JI03-01 ~596.5 m depth. Note the colloform, banded quartz-pyrargyrite (reddish-mauve) and cox-comb quartz textures.

However, the newly discovered Saucito Vein apparently has increased gold grades (Megaw, pers comm., 2006) and by Peñoles company reports they are treating it more as a gold bearing vein (quoting “1.0 M gold equivalent ounces”) than a silver vein (Peñoles 2005 Annual Report ), hence there may be a district metal zonation favouring increased gold westward from the original Fresnillo Mine area.

Common throughout the drill core are scattered sphalerite-galena veins which increase in abundance usually below ~500 m depth. Generally, below ~500 m depth the veins become increasingly dominated by Pb-Zn and decrease in Au and Ag much like observed in the Fresnillo epithermal vein systems. Alteration is usually very weak surrounding these veins. Table 11-1 summarizes the highlights from the drilling programme and a complete list of the assays and scans of the original drill logs are in Appendix 4.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

28


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

9.0   SITE VISIT

The author and CCIC representative, Stephen Wetherup, was toured by Peter Megaw (IMDEX Inc., Mag-Silver Board Member and Mexican Exploration Manager for Mag-Silver) and Gabriel Arredondo (Mag-Silver, Project Geologist) through the Juanicipio Property and the core logging, sampling and storage compound from February 17th to 18th, 2006. During this time, the author was taken to the Property and shown most of the drill pads including the reclamation done on them (Figure 9-1) and many representative outcrops of the rock types and alteration styles present on the claim (Figure 6-2). Also, a couple of hours were spent examining recent drill intersections completed during Peñoles 2005 drill programme on the Juanicipio Property (Figure 9-2).

Figure 9-1: Photo of drill pad for JI03-01. Collar (cement pad) located between Peter Megaw and Gabriel Arredondo who are avoiding the flourishing cacti planted by Mag Silver personnel.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

29


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Figure 9-2: Core from the Peñoles drilling on the Juanicipio Property in 2005 with spectacular pyrargyrite+/-galena+/-sphalerite banded quartz veins.

Figure 9-3: Photo of Mag Silver's core storage yard and representative sections of core laid out.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

30


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

At Mag Silver’s core storage compound, the author was able to examine most of the mineralized intersections from the 2003-2004 drilling programmes completed by Mag Silver on the Juanicipio Property (Figure 9-3). Independent check samples representing two mineralized zones, both a high-grade silver vein and a base-metal vein including the surrounding host rock were taken at this time, by the author. The results from this sampling are presented in section 14.0.

10.0 EXPLORATION

As mentioned in section 5.0, the Juanicipio Property was basically at the drilling stage when Minera Sunshine ran short of funds. They had completed several phases of geological mapping, satellite and air photo interpretation, NSAMT geophysical surveys, geochemical rock sampling and data compilation. From this several drill targets were delineated and Mag Silver Corporation continued this work by conducting a 7 hole, 6146.16 m, drill programme in 2003 and a 2 hole, 1448.41 m, programme in 2004. The results of these programmes are summarized in the following section.

11.0 DIAMOND DRILLING

Mag Silver Corp. began what would prove to be successful 7 drill hole programme on May 10th, 2003 and continued in 2004 with a 2 hole programme that began on June 2nd, 2004. These holes were targeting deep fault structures that were anticipated to host Fresnillo style high-grade Ag (Au) veins. As mentioned above, in the Fresnillo area these types of veins are near vertical and best mineralized between 200 m and 500 m depths and as such, angled holes between -53o and -70o were required to be drilled to a minimum length of 700 m to reach the target horizons (Table 11-1).

Table 11-1: Drill hole collar data summary, from the 2003 and 2004 programmes.

Hole No.  Started  Finished 

UTM NAD 27 (for Mexico)

Azimuth  Dip  Total Length 
      Easting  Northing      (m) 
JI03-01  10/05/2003  30/05/2003  710915  2558474  20  -60  748.59 
JI 03-01A  08/07/2003  14/07/2003  710915  2558474  15  -62  248.59 
JI03-02  30/05/2003  02/07/2003  710615  2558911  18  -62  901.92 
JI03-03  16/07/2003  06/08/2003  710755  2558056  20  -60  840.00 
JI03-04  07/08/2003  28/08/2003  710536  2557630  15  -70  925.38 
JI03-05  29/08/2003  14/09/2003  710779  2559131  20  -62  928.04 
JI03-06  15/09/2003  01/10/2003  711098  2559283  15  -53  742.77 
JI03-07  02/10/2003  16/10/2003  710366  2559937  20  -60  810.87 
JI04-08  02/06/2004  20/06/2004  710795  2557851  20  -68  700.43 
JI04-09  22/06/2004  16/07/2004  709900  2559530  10  -59  747.98 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

31


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Confirmation of Mag Silver’s hypothesis that Fresnillo style high-grade Ag (Au) veins exist on the Juanicipio Property came with the drilling of the first hole, JI03-01. This hole intersected a subsurface void at 596.45 m (~516 m true depth) resulting in only 22% core recovery but the core that was recovered consisted of complexly banded, fine grained and brecciated quartz-pyrargyrite-sphalerite-galena vein material. This intersection was approximately 2.99 m long and averaged 469 g/t Ag, 6.9 g/t Au, 0.05% Pb, and 0.14% Zn and included a single sample interval that returned 689 g/t Ag, 10.3 g/t Au, 0.07% Pb, and 0.21% Zn. Another smaller vein was intersected further down the hole at 624.62 m and returned 418 g/t Ag and 5.0 g/t Au.

Mineralization occurs within greywacke and shale units that are weakly clay (smectite or celadonite?) to sericite altered and locally silicified and impregnated with finely disseminated pyrite. Alteration is not widespread only occurring within a few meters of the veins and in general is subtle.

Since, the most important zone in hole JI03-01 intersected a subsurface void a wedge was employed at 390.27 m and designated as hole JI03-01A. This hole intersected the same vein structure a few metres below that in hole JI03-01, at 603.65 m down (~522 m true depth) and returned 397 g/t Ag, 0.8 g/t Au, 0.12% Pb, and 0.01 % Zn over 1.7 m, including 2.1 g/t Au, and 610 g/t Ag over 0.49 m.

Holes JI03-02, JI03-03 and JI03-04 did not intersect Fresnillo style high-grade Ag (Au) veins however JI03-02 did manage to cut a couple gold bearing veins that returned 1.6 g/t Au over 1.5 m at 186.45 m depth and 2.4 g/t Au, 68 g/t Ag, >1.0% Pb, and 6.75% Zn over 0.43 m at 873.55 m depth. Hole JI03-02 also encountered several, scattered, narrow (<0.5 m) base metal veins with generally 0.1 to >1.0% Pb, and 0.5% to 12.1% Zn with locally anomalous gold up to 500 ppb and moderate silver concentrations between 5 and 66 g/t. These base metal intersections all occur below 800 m depth in the hole.

Hole JI03-05 cut two zones of high-grade silver mineralization at 580.45 m and 779.20 m depth and returned 395 g/t Ag, 0.24% Pb and 0.32% Zn over 0.75 m and 231 g/t Ag, 0.79% Pb and 5.25% Zn over 0.17 m, respectively. Much like in hole JI03-02, JI03-05 intersected several scattered zones of base metal mineralization with moderate silver assay values below 800 m depth and are summarized in table 11-2.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

32


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

Table 11-2: Highlights from 2003 and 2004 drilling programmes.

  From  To  Int. Au  Ag  Pb  Zn 
Hole No.  (m)  (m)  (m) (g/t)  (g/t)  (%)  (%) 
JI03-01  596.25  599.24  2.99* 6.9  469  0.05  0.14 
    incl  2.00** 10.3  689  0.07  0.21 
  624.62  624.84  0.22 5.0  418  0.02  0.06 
JI03-01A  603.65  605.38  1.70 0.8  397  0.12  0.01 
    incl  0.49 2.1  610  0.05  0.03 
JI03-02  186.45  187.95  1.50 1.6  -  -  0.01 
  873.55  873.98  0.43 2.4  68  >1.00  6.75 
JI03-05  580.45  581.20  0.75 0.1  395  0.24  0.32 
  779.20  779.37  0.17 0.2  231  0.79  5.25 
  800.40  807.85  7.45 0.1  59  1.8  2.76 
    incl  4.15 0.2  98  3.17  4.77 
  858.00  859.03  1.03 1.2  30  0.25  2.15 
  863.65  864.26  0.61 0.1  25  0.82  2.01 
JI03-06  710.27  714.52  4.25 0.6  51  0.09  0.07 
JI03-07  320.44  323.03  2.71 0.4  179    0.02 
    incl  0.39 0.6  593    0.02 
    incl  0.70 0.5  328  0.01  0.04 
  360.39  378.27  1.13 0.3  224    0.01 
JI04-08  629.36  630.14  0.78 1.3  14  0.01  0.02 

*Core recovery poor (<50%) for this interval due to a subsurface void. 
** Core recovery poor (~22%) for this interval due to a subsurface void.

Results from holes JI03-06, JI04-08, and JI04-09 were not as spectacular as earlier holes in the programme but yielded a few scattered silver and gold bearing zones. Hole JI03-07 however encountered two silver mineralized structures at 320.44 m and 360.39 m that returned 179 g/t Ag and 0.4 g/t Au over 2.71 m and 224 g/t Ag over 1.13 m, respectively. The higher zone also included separate high-grade intervals of 593 g/t Ag and 0.6 g/t Au over 0.39 m and 328 g/t Ag and 0.5 g/t Au over 0.70 m.

All holes contained scattered zones of anomalous to highly anomalous As, Sb and Hg. Mercury shows a tendency to be more concentrated in zones of argillic to advanced argillic alteration in the upper 250 m (above ~200 m depth) of most drill holes. Of the 567 sampled intervals 27 returned >1000 ppb Hg (top 95th percentile) of which 18 or two-thirds were at intersected above 250 m, which is to be expected in the Epithermal Au-Ag deposit model. These highly altered mercury bearing zones rarely contained appreciable concentrations of any other element analyzed for and occurred.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

33




Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

12.0  SAMPLING METHOD AND APPROACH

Drill core (HQ and NQ diameters) was collected from the drilling rig and brought to the core storage facility in Fresnillo for logging and sampling, by the project or assistant geologists, on a daily basis. At the core storage/logging facility, the core was measured, core recovery estimated, and the rock types, alteration minerals, textural features, structures, veining, and mineralized zones documented. Sample intervals were measured, marked with permanent marker and given a sample number and tag by the geologists. From this point, technicians were given the core to split, using a manual wheel splitter, into halves where one half of each interval was placed with the sample tag into a sample bag and marked with the sample number. The other half was placed back into the core box in it original position and the core boxes were then stacked in order and by hole number. Where the veins were coherent they were sawed in half perpendicular to the “grain” to get a representative split.

The geologists visually selected sample intervals based on the presence of quartz/carbonate veins, silicification or the presence of sulphide minerals. Any significant mineralized zones were also sampled for several meters below and above and generally samples were kept to between 0.1 m and 3 m in length. Given that this was the first drilling programme and the first time mineralization was encountered on the Juanicipio Property, small intervals (i.e. <0.3 m) were necessary to identify the mineralized elements within the system.

13.0  SAMPLE PREPARATION, ANALYSES AND SECURITY

Once samples were split and sealed into plastic sample bags by the technicians at the Mag Silver core facility in Fresnillo, several bags were put into rice sacks and the samples were readied for pick-up. BSI-Inspectorate laboratory couriers picked the samples up at the Fresnillo facility and transported them, by truck to BSI’s prep lab in Durango. There they were crushed, split into smaller aliquots and then pulverized into pulps before they were flown to Reno, Nevada for analysis. Each sample was analysed for Ag, As, Sb, Cu, Hg, Pb, and Zn by aqua-regia digestion and flame atomic absorption analysis and for Au by standard fire assay. The details of the procedures used by BSI-Inspectorate are in Appendix 5 along with the detection limits of each method.

Along with the core samples, seven blanks and three standards were randomly assigned sample numbers and placed into samples bags and sent to the laboratory as an initial independent check programme.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

35


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

Duplicates samples were also run by Mag Silver with duplicates being sent to Chemex in Vancouver for analysis.

14.0 DATA VERIFICATION

The author, during the site visit, verified (1) the existence and locations of the drill collars, (2) the presence of the advanced argillic and silicified volcanic rocks and textures described and used as evidence of an epithermal system on the Juanicipio Property, (3) most of the mineralized intercepts in the core visually for the presence and relative abundance of ore minerals and compared them to the reported assays, and (5) personally collected (quarter-split core) samples from a zone of high-grade Ag (Au) mineralization and high-grade lead-zinc mineralization. The quarter-split samples duplicate the intervals from the original Mag Silver sampling and were shipped to Vancouver, Canada by the author and taken to Acme Analytical Laboratories, personally. A summary of the results and a comparison with the original assays is presented in table 14-1 and the entire assay table for the check assays can be found in Appendix 6.

Table 14-1: Comparison of Mag Silver reported assays and CCIC check assays of identical intervals.

Hole From  To  Int.  Sampler  Sample  Au  Ag  Pb  Zn  Cu 
(m)  (m)  (m)    #  (g/t)*  (g/t)*  (%)*  (%)*  (%)* 
JI0301A 603.17  603.65  0.48  MAG  169419  0.02  7.2  0.00  0.00  0.00 
      CCIC  888  0.02  4  <.01  <.01  <.001 
JI0301A 603.65  604.14  0.49  MAG  169420  2.12  609.8  0.05  0.03  0.02 
      CCIC  889  1.72  534  0.05  0.02  0.06 
JI0301A 604.19  604.59  0.40  MAG  169421  0.42  760.4  0.37  0.01  0.01 
      CCIC  890  0.61  1045  0.30  0.01  0.02 
JI0301A 604.57  605.38  0.81  MAG  169422  0.09  89.3  0.03  0.01  0.00 
      CCIC  891  0.04  13  <.01  0.01  0.00 
JI0305 803.12  804.27  1.15  MAG  169562  0.34  45.6  1.14  2.85  0.07 
      CCIC  892  1.19  51  0.62  1.95  0.08 
JI0305 804.27  805.37  1.10  MAG  169563  0.25  246.8  9.05  10.75  0.35 
      CCIC  893  0.3  218  5.30  11.27  0.33 
JI0305 805.37  806.90  1.53  MAG  169572  0.03  8.4  0.07  0.15  0.01 
      CCIC  894  0.04  13  0.08  0.29  0.01 

* Original Mag Silver assays reported in ppb for Au, and in ppm for Ag, Cu, Pb and Zn.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

36


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

As mentioned above, Mag Silver sent their samples to BSI-Inspectorate Laboratories, in Reno and had them analyzed by standard fire assay for Au and by aqua-regia digestion with an AA (flame atomic adsorption) finish. CCIC attempted to duplicate the methods used by Mag Silver when sending their check samples to Acme Analytical Labs. Checks were analyzed for Au by standard fire assay and for silver and base-metals by aqua-regia digestion and an ICP-ES (inductively couple plasma-emission spectroscopy) finish. AA versus ICP-ES analyses will have differing detection limits for each element analyzed for but the concern here is to verify the high-grade analyses and in which case these methods should be comparable. Some differences between the methods may lie in the efficiency of the aqua-regia digestion procedure and the exact formula for aqua-regia used by each of the laboratories, which is difficult to ascertain without independently running a cross-laboratory check programme. In this case it is sufficient that the assay values returned for the check samples are reasonably close to the original sample assays, keeping in mind that the checks are quarter-splits of the remaining core (i.e. not the same sample pulp or reject, from the original sample) in the core boxes and mineral heterogeny in the core will affect the final assays.

In most cases the assay values between check and original samples are very similar. Three check analyses are notable (bold in Table 14-1), the silver analysis for CCIC samples 890 and 891, and the gold analysis for 892. The silver check analysis for sample 890 is significantly greater, by 285 g/t and in sample 892 the assay value of 1.19 g/t Au returned by the CCIC check analysis is 3.5 times greater than the original Mag Silver assay. Conversely, the silver check analysis for 891 is significantly lower, by 76 g/t (85% lower), than the Mag Silver values for these intervals. Differences such as these are likely due to heterogeneous distribution of ore minerals within the core and are not unexpected when dealing with high-grade mineralization and limited sample volumes. More important to this check sample exercise is to verify the magnitude of grades and determine if there is a bias in the analyses to consistently over or underestimate grades. In this case, Mag Silver’s assay values are over as much as under those returned in the check analyses for gold, silver, lead, zinc and copper, and

Mag Silver’s reported results appear to be fair and reasonable assessments of the metal grades in the intervals sampled.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

37


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

15.0 ADJACENT PROPERTIES

The Juanicipio Property has several properties adjacent to it including the Cesantoni kaolinite pit (north), the Piedras Kaolinite Mine (southeast) and Peñoles Fresnillo Mine (Figures 2-2 and 6-1). The kaolinite operations are small and other than indicating the possible presence of advanced argillic alteration they are of little interest.

The Fresnillo Mine is the largest silver mine in the world producing an estimated 10,000 tonnes of silver in it’s ~ 450 year history (Ruvalcaba-Ruiz and Thompson, 1988; Lang, et al. 1988), and Peñoles land holding border the Juanicipio Property on its east side. Much of the early production in the Fresnillo Mine came from manto, stockwork and skarn deposits in and around the main workings near the town of Fresnillo, which has been highly depleted. At the time of this report, Peñoles is mining principally deep high-grade Ag (Au) veins such as the Santa Niño and San Carlos Veins and is currently sinking a shaft to access the El Saucito Vein (Gemmel, et al., 1988; Peñoles 2005 Annual Report). To date, there has been no direct evidence of manto, stockwork or skarn mineralization on the Juanicipio Property, only the possibility that they could exist owing to the close spatial relationship exhibited between them and the high-grade silver veins in the Fresnillo Deposit.

Recent drilling, as described above, has encountered high-grade (> 500 g/t Ag) epithermal Ag (Au) mineralization on the Juanicipio Property similar to that described in the Fresnillo Mine (Santo Niño, San Carlos and El Saucito Veins). The high-grade Ag (Au) within the veins in the Fresnillo Mine extend for kilometres along strike and between 100-500 m depth (Simmons, et al., 1988) this may or may not be the case with the veins on the Juanicipio Property.

16.0 MINERAL PROCESSING AND METALLURGICAL TESTING

As this project is still in the discovery phases of exploration, metallurgical testing has not been completed on rocks from the Juanicipio Property. However, Peñoles has been actively mining epithermal veins similar to the ones intersected by the initial drilling programmes suggesting that the mineral processing procedures and metallurgy should be similar, as well.

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

38


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

17.0 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE

No systematic definition drilling programmes have been completed at this point, hence there are no mineral resource estimates completed.

18.0 INTERPRETATIONS AND CONCLUSIONS

Previous to drilling Mag Silver Corporation, through IMDEX Inc./Minera Cascabel S.A. de C.V. had developed an exploration model to explore for low-sulphidation epithermal high-grade silver (gold) veins analogous to the veins within the Fresnillo Mine. This exploration was multi-faceted using regional and detailed geological mapping, structural mapping, alteration mapping, geochemical sampling, satellite/air photo interpretation, and NSAMT geophysical surveys. With these data, they came to the reasonable conclusions that the Juanicipio Property contained a large epithermal system active in the Tertiary on its northeast corner and structures exist that are near parallel to the mineralized structures in the Fresnillo area. As recent exploration by Peñoles suggested that there are many high-grade Ag (Au) veins in the area and that Peñoles exploration work was approaching the Juanicipio Property (up to the boundary) Mag Silver Corporation felt it had an excellent possibility of finding similar veins on Juanicipio at depth.

The drill programme initiated in 2003 and 2004 intersected several structures containing mineralization, both high-grade Ag (Au) and base-metal Pb-Zn-Ag veins. Hence, the epithermal system on the Juanicipio Property is mineralized and the geochemical signatures are such that these intersected veins are very similar to those on Peñoles claims and possibly are a continuation of the same epithermal system that hosts the Fresnillo veins. Further drilling will be necessary to determine how many of the structures interpreted from the surface geophysical and geological data are mineralized and how long and deep they extend.

19.0 RECOMMENDATIONS

As the 2003 and 2004 drilling confirmed the presence of high-grade epithermal Ag (Au) veins on the Juanicipio Property, the next phase of work should involve continued drilling and possibly more NSAMT geophysical surveying. The first NSAMT surveys managed to identify several structures some of which appear to have been intersected by the drilling and

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

39


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

were mineralized. A larger survey may discover additional structures that have yet to be identified and will almost certainly produce more drill targets.

Future diamond drilling will need to follow up on both the high-grade Ag (Au) and base-metal intercepts from the first round of drilling. The principal target, the high-grade Ag (Au) mineralized structures, should be drill tested at various elevations and along strike to determine whether they are large enough to be of economic interest. Also, as the veins in the Fresnillo Mine base-metal (Pb-Zn) content tends to increase with depth, additional drilling focussing on cutting the base-metal mineralized structures at higher elevations is necessary to ascertain if indeed the precious metal values increase up-section. Hence, most of the next phase of drilling will be a series of “step-out” holes (~ 100 m apart) from the first mineralized drill holes. From these broad step-out drill holes Mag Silver should be able to determine whether the Juanicipio Property could contain sufficient amounts of Ag (Au) mineralization to warrant definition drilling, metallurgy, and a resource model.

A recommended budget for the next phases is difficult to estimate as the amount of drilling is entirely dependent on the results from each step-out hole and the drilling tends to be deep (600-800 m). In all likelihood, to reasonably assess the Juanicipio Property at least 20-30 additional drill holes will be required to bring it to the advanced exploration and the definition drilling stage which should cost US$2,815,000.

Table 19-1: Proposed exploration budget for second phase of work.

                                   Expense  Units Approximate Cost 
  ($ CAD) 
Additional Road Construction  ~ 5 km’s $50,000 
Drilling (DDH and RC) and field support  ~ 17000m $2,500,000 
Geochemical Analyses (incl. QA/QC samples)  ~2500 assays $75,000 
Remediation  $20,000 
Drilling Report and 3-D modelling  $100,000 
NSAMT Surveying  $20,000 
Management and contingency  $50,000 
  Total $2,815,000 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

40


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

20.0 REFERENCES

Buchanan, L.J., 1981: Precious metal deposits associated with volcanic environments in the Southwest; in Dickinson, W.R. and Payne, W.D., eds. Relations of tectonics to ore deposits in the southern Cordillera, Arizona Geological Society Digest, v. 14, p. 237-262.

Church, J.A., 1907, Proano, a famous mine of Fresnillo, Mexico; Engineering and Mining Journal, v. 84, p. 53-56

Garcia, M.E., Querol, S.F. and Lowther, G.K., 1991, Geology of the Fresnillo mining district, Zacatecas; in: Salas, G.P., ed., Economic Geology, Mexico, Geological Society of America, Boulder, CO, DNAG Volume P-3, p. 383-394.

Gemmell, J.B., Simmons, S.F. and Zantop, H., 1988, The Santo Nino silver-lead-zinc vein, Fresnillo District, Zacatecas, Mexico; Part I Structure, vein stratigraphy, and mineralogy; Economic Geology, v. 83, no. 8, p. 1597-1618.

Hedenquist, J.W., Izawa, E, Arribas, A, and White N.C., 1996, Epithermal Gold Deposits: Styles Characteristics and Exploration; Society of Resource Geology, resource Geology Special Publication Number 1, Tokyo, Japan, 24 p.

Lang, B., Steinitz, G., Sawkins, F.J., and Simmons, S.F., 1988: K-Ar age studies in the Fresnillo silver district, Zacatecas; Econ. Geol. 83, 1642-1646.

Megaw, P.K.M. and Ramirez, R.L., 2001: Report on Phase 1 data compilation and geological, geochemical and geophysical study of the Juanicipio Claim, Fresnillo District, Zacatecas, Mexico; Proprietary report to Minera Sunshine de Mexico S.A. de C.V., April 2001, p. 59.

Megaw, Peter, 2006: Exploration of Low Sulphidation Epithermal Vein Systems; Mag Silver unpublished company report, 3 p.

Ruvalcaba-Ruiz, D.C. and Thompson, T.B., 1988, Ore deposits at the Fresnillo Mine, Zacatecas, Mexico; Economic Geology, v. 83, no. 8, p. 1583-1596.

Simmons, S.F., Gemmell, J.B. and Sawkins, F.J., 1988, The Santo Nino silver-lead-zinc vein, Fresnillo District, Zacatecas; Part II, Physical and chemical nature of ore-forming solutions; Economic Geology, v. 83, no. 8, p. 1619-1641.

Simmons, S.F., 1991, Hydrologic implications of alteration and fluid inclusion studies in the Fresnillo District, Mexico; evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn orebodies.: Economic Geology, v. 86, no. 8, p1579-1601.

Wendt, Clancy, J., 2002: The Geology and Exploration Potential of the Juanicipio Property, Fresnillo District, Zacatecas, Mexico; Technical Report for Mega Capital Investments.

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006

41


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

APPENDIX 1

Author Certificate of Qualifications and Certificate of Authorization

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


 

Caracle Creek International Consulting Inc.

Stephen William Wetherup 
34176 Cedar Avenue
Abbotsford, British Columbia, Canada, V2S 2W1 
Telephone: 604-617-5955, Email: swetherup@cciconline.com

CERTIFICATE OF AUTHOR

I, Stephen William Wetherup of 34176 Cedar Avenue, Abbotsford, British Columbia, certify that:

1.      I am a graduate of the University of Manitoba with a BSc. Honours in Geology, in 1995,
 
2.      I have practiced my profession as an mineral exploration geologist with Fox Geological Services, Phelps Dodge Corp. of Canada and as a geological consultant, for 9 years, where I have been involved with the geological exploration of precious and base metal properties and deposits in a variety of capacities, including conducting site visits and evaluations,
 
3.      I have been operating a business as a geological consultant under my own name since June, 2001, and under the name of Caracle Creek International Consulting Inc. since March 2004,
 
4.      I am a member of the Society of Economic Geologists, Geological Association of Canada, and the Vancouver Mining Exploration Group,
 
5.      I am a Professional Geoscientist registered with the Association of Professional Geoscientists and Engineers of British Columbia and have been for 5 years,
 
6.      I am a “qualified person” under the definition for “qualified persons” set out by NI43-101,
 
7.      I last visited the Juanicipio Property between February 17th and 18th , 2006,
 
8.      I am the author of this technical report “Independent Technical Report: Juanicipio Silver Project, Zacatecas State, Mexico” (the “Report”) and dated July 5th , 2006,
 
9.      I have reviewed the geological data and am not aware of any material facts or change in facts at the time this certification is dated,
 
10.      I have no monetary interest in the property nor do I own or expect to receive interest in Mag- Silver Corporation,
 
11.      I have had no involvement with the Mag-Silver Corporation or with the Juanicipio Property previous to writing this report,
 
12.      I have read the TSX Venture Exchange policy documents, National Instrument 43-101, Companion Policy 43-101CP, and Form 43-101F1 and the Report has been prepared in accordance to the standards set out by the aforementioned documents.
 

____ ___ ___ __ signed__ __ ____ 
Stephen William Wetherup, 
BSc., P.Geo.

Abbotsford, British Columbia 
Dated this 5
th day of July, 2006

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006



Caracle Creek International Consulting Inc.

Stephen William Wetherup 
34176 Cedar Avenue
Abbotsford, British Columbia, Canada, V2S 2W1 
Telephone: 604-617-5955, Email: swetherup@cciconline.com

CONSENT OF AUTHOR

TO:  Ontario Securities Commission 
Alberta Securities Commission 
British Columbia Securities Commission
 
Manitoba Securities Commission

I, Stephen Wetherup, do hereby consent to the filing of the written disclosure of the technical report titled “Independent Technical Report: Juanicipio Silver Project, Zacatecas State, Mexico” and dated July 5th, 2006 (the “Technical Report”) and any extracts from or a summary of the Technical Report in the prospectus of Mag-Silver Corporation, and to the filing of the Technical Report with the regulatory authorities referred to above.

I also certify that I have read the written disclosure being filed and I do not have any reason to believe that there are any misrepresentations in the information derived from the Technical.

Dated this 5th Day of July, 2006.

                   signed                        
Stephen William Wetherup, 
(BSc., P.Geo.)

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

APPENDIX 2

Glossary of Terms

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

(For more detailed descriptions or for geological, mining and mineral related terms not covered in this glossary, one should consult a reputable dictionary or source of related technical definitions).

“Ag”  silver 
“alteration”  any physical or chemical change in a rock or mineral subsequent to 
  its formation; milder and more localized than metamorphism 
“anomaly”  an abnormal find or result 
“argillic”  clay or clay minerals; alteration whereby certain minerals are 
  converted to clay 
“assay”  the analysis of minerals and mine products to determine the 
  concentration of their components 
“Au”  gold 
“bedrock”  un-weathered rock below the soil; solid rock 
“breccia”  coarse clastic sedimentary rock, the constituent clasts of which are 
  angular 
“Cu”  copper 
“clast”  particle of broken down rock 
“concentrate”  a product in which valuable minerals have been enriched
(concentrated) through mineral processing
“copper-porphyry”  or “copper-gold porphyry” is a type of copper (gold) deposit in 
  which the copper (gold) minerals occur in disseminated grains and/or 
  in veinlets through a large volume of rock 
“cut-off grade”  the break-even or lowest grade of ore in a deposit that will recover 
  its total mining costs 
“cyanidation”  the process whereby gold in ore material is dissolved out using a 
  weak cyanide solution 
“decline”  access to underground via a downward incline or sloping roadway 
dip  direction or angle that the plane of a rock formation makes with the 
  horizontal 
disseminated  in a mineral deposit, whereby the minerals (metals) occur as 
  scattered particles in the rock, but in sufficient quantity to make the 
  deposit a worthwhile ore 

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

dike  a sheet-like body of igneous rock cutting across bedding planes of 
  rock 
“epithermal”  vein deposit formed within about a kilometre of the Earth’s surface 
  by hot ascending solutions; low temperature-low pressure 
  mineralization style 
“fire assay”  an analytical smelting procedure for determining the precious metal 
  content in rock and mine products 
“g/t”  gram per tonne (gram per 1000 kilogram) 
“Ga”  a thousand million years (a billion years) 
“gossan”  rocks in which metal (usually iron)-bearing sulphide minerals have 
  been oxidized by air and water 
“grade”  the element or metal content per unit of material 
“gravity process”  the physical process of separating minerals from waste rock using 
their natural differences in specific gravity
“ha”  hectare 
“head frame”  The structure surmounting the mine shaft which supports the hoist 
  rope pulley, and often the hoist itself 
“heap-leach”  or “heap-leaching”, is a process whereby valuable metals (usually 
  gold-silver) are leached from a heap, or pad (pile), of crushed ore by 
  using leaching solutions that percolate down through the heap, and 
  are collected from a sloping, impermeable liner below the heap or 
  pad 
“high-sulphidation”  an epithermal system whereby later stage mineralization consists 
  mainly of gold-copper mineralization (generally deeper than low 
  sulphidation) 
“hoist”  the machine used for raising and lowering the cage or other 
  conveyance in a mine shaft 
“hydrothermal”  heated or superheated fluid or water from depth in the earth’s crust 
“igneous rock”  rock formed by crystallization or solidification of magma 
“lode”  the occurrence of mineralization or a mineral deposit within solid 
  rock (bedrock) 
“low sulphidation”  an epithermal system whereby early stage mineralization consists of 
  silica minerals and gold; a shallow to surficial, hot spring 
  environment 

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

“Ma”  a million years 
“mafic”  general term used to describe rocks containing ferromagnesian 
  minerals (see also basic) 
“magma”  molten rock material formed within the earth’s crust 
“metamorphism”  The processes by which changes are brought about in rocks within 
  the Earth’s crust through heat, pressure and chemically active fluids 
“metasomatism”  a metamorphic change which involves the introduction of material 
  from an external source 
“mineral”  a naturally occurring inorganic substance typically with a crystalline 
  structure 
“Mo”  molybdenum 
“mullock”  mine waste rock 
“olivine”  a rock forming group of magnesium iron silicate minerals forming a 
  complete solid solution series between the forsterite mineral 
  (magnesium silicate) to the fayalite mineral (iron silicate) 
“ophiolite”  collective name for a group of mafic and ultramafic rocks associated 
  with marine origin; a fossilized piece of oceanic crust 
“ore”  a mineral or rock that can be extracted economically 
“ore body”  a mass of ore with defined geometry 
“outcrop”  rock unit exposure at surface 
“Pb”  lead 
“polymetallic”  several metals 
“porphyry”  a medium- to coarse-grained intrusive (generally felsic) igneous rock 
  that contains conspicuous mineral crystals that are coarser-grained 
  than the groundmass 
“pressure oxidation”  the thermal oxidation of sulphides at elevated pressure 
“pyrite”  iron sulphide mineral 
“pyroxenite”  an igneous rock comprising generally of pyroxene minerals, of 
varying calcium, magnesium and iron silicates
“refractory”  a term used to describe gold ores which are not amenable to recovery 
  using conventional gravity or cyanide leaching technology 

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

“Reserve”  that part of a Resource which can be mined at a profit under 
  reasonably expected economic conditions as defined by the JORC 
  Code 
“Resource”  mineralised body for which there is sufficient sampling information 
  and geological understanding to outline a deposit of potential 
  economic merit 
“roasting”  the thermal oxidation of sulphides at atmospheric pressure as
  defined by the JORC Code 
“shaft”  or “mine shaft” is a vertical or inclined excavation in rock or 
  consolidated material for the purpose of providing access to an ore 
body. Usually equipped with a hoist at the top
“sill”  a sheet-like body of igneous rock which conforms to bedding planes 
  of rock 
“skarn”  a contact thermally metamorphosed impure limestone or dolomite 
“stratabound”  contained within a stratum 
“stratiform”  strata like 
“strike”  horizontal level direction or bearing of an inclined rock bed, 
  structure, vein or stratum surface. The direction is perpendicular to 
  the direction of dip 
“strip ratio”  ratio of waste rock to ore mined in open cast (pit) mining 
“sub outcrop”  rock unit exposure below the surface (also referred to as subcrop) 
“sulphidation”  a relative classification of ore forming environments principally 
  hydrothermal fluidisation 
“sulphide”  a mineral in which the element sulphur is in combination with one or 
  more metallic elements 
“tailings”  the waste products resulting from the processing of ore material 
“troctolite”  an olivine gabbro 
“ultramafic”  partial acronym describing an igneous rock consisting of ferro (iron) 
  magnesian minerals 
“veinlet”  a narrow, fine stringer or filament of mineral (metal) that occurs in a 
  discontinuous pattern in the host rock 
“Zn”  Zinc 

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

APPENDIX 3

Exploration Permits and Mexican Mining Law

 
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006










 

MINING LAW

Press in the official paper of government at June 26, 1992, with the changes of the 
December 24, 1996.

CHAPTER FIRST

General Provisions

ARTICLE 1. This Law regulates Article 27 of the Constitution in mining matters and its provisions are public order provisions to be observed throughout national territory. Its application is vested in the Federal Executive through the Ministry of Economy, hereinafter referred to as the Ministry.

ARTICLE 2. Exploration, exploitation and beneficiation of minerals or substances which constitute deposits in veins, masses or beds, the nature whereof is different from the components of land, as well as salt marshes directly formed by sea water that comes from current seas, either over the surface or from under the ground, naturally or artificially, and the resulting salts and their by-products will be subject to the provisions of this law.

ARTICLE 3. The following will be understood for the purposes of this Law:

I. Exploration: Dones and works performed on land aimed at identifying mineral deposits and quantifying and evaluating the economically utilizable reserves they contain;

II. Exploitation: Dones and works aimed at preparing and developing the area comprised by the mineral deposit, as well as work aimed at detaching and extracting the mineral products existing therein; and

III. Beneficiation: The preparation, treatment, first hand smelting and refining of mineral products in any of their phases for the purpose of recovering or obtaining minerals or substances, as well as enhancing the concentration and purity of their contents.

ARTICLE 4. The following are minerals or substances, which constitute deposits in veins, strata, masses or beds, different from the components of land:

I. Minerals or substances from which antimony, arsenic, barium, beryl, bismuth, boron, bromine, cadmium, cesium, cobalt, copper, chrome, fluorine, iodine, lanthanum, magnesium, phosphorus, potassium, rubidium, ruthenium, scandium, sodium, strontium, tin, gallium, germanium, hafnium, iron, indium, iridium, lithium, manganese, mercury, molybdenum, niobium, nickel, gold, osmium, palladium, silver, platinum, lead, rhenium,


rhodium, selenium, thallium, tantalum, tellurium, titanium, tungsten, vanadium, yttrium, zirconium or zinc are extracted;

II. The following minerals or groups of minerals for industrial use: actinolite; alum, alunite, amosite, andalusite, anhydrite, anthophyllite, biotite, crocidolite, chromite, sulphur, barite, bauxite, bloedite, boehmite, borates, brucite, carnallite, celestite, cyanite, cordierite, corundum, chrysotile, quartz, dolomite, epsomite, glasserite, glauberite, phlogopite, fluorite, graphite, garnets, halite, hydromagnesite, kainite, kieserite, langbeinite, magnesite, micas, mirabilite, mullite, muscovite, olivines, sodium nitrate, palygorskite, phosphates, pyrophyllite, polihalite, sepiolite, sillimanite, sylvite, staurolite, talc, taquidrite, thenardite, tremolite, trona, vermiculite, witherite, wollastonite, gypsum, zeolites and zircon;

II. BIS. Diatomite;

III. (Repealed);

IV. Precious stones: alexandrite, amazonite, amethyst, aquamarine, aventurine, beryl, chrysoberyl, crocidolite, diamond, dioptase, epidote, emerald, jadeite, kunzite, laps-lazuli, malachite, morganite, olivine, opal, riebeckite, ruby, sapphire, scapolite, sodalite, spinel, spodumene, tanzanite, topaz, tourmaline, turquoise and vesuvianite;

V. Gem salt;

VI. Products derived from the weathering of rocks that in order to be mined require underground works, such as all types of clays, i.e. kaolin and montmorillonites as well as quartz, feldspar and plagioclase sands;

VII. The following mineral or organic materials, utilizable as fertilizers: apatite, collophane, phosphosiderite, francolite, variscite, wavellite and guano;

VIII. The following solid mineral fuels: coal mineral in all its varieties, and

IX. All others determined by the Federal Executive by a decree which will be published in Mexico’s Official Newspaper, taking into account their industrial use with the development of new technologies, their quotation in international markets or the need to promote the rational exploitation and preservation of non-renewable resources in favor of society.

Those who engage in the exploration or exploitation of the minerals or substances referred to in above section IX will have a preferential right to obtain the respective mining concession on the basis of the provisions of common law, provided that they request it in the terms of this Law and its Regulation.

ARTICLE 5. Excluded from the application of this Law are:


I. Petroleum and solid, liquid or gaseous hydrogen carbides;

II. Radioactive minerals;

III. Substances contained in suspension or dissolution by underground waters, provided that they do not emanate from a mineral deposit different from the components of lands;

IV. Rocks or products of the decomposition of rocks which can only be used to manufacture construction materials or are intended for this purpose;

V. Products derived from the weathering of rocks, the mining whereof is effected primarily by open pit works; and

VI. Salt that originates from salines formed in endorreic basins.

ARTICLE 6. The exploration, exploitation and beneficiation of the minerals or substances referred to in this Law are public utilities and will have preference over any other use or utilization of the land, subject to the conditions established herein, and only by a Federal Law may taxes be assessed on these activities

ARTICLE 7. The rights and duties of the Ministry are:

I. Regulate and promote exploration and exploitation as well as the rational utilization and preservation of the Nation’s mineral resources;

II. Prepare and follow up the sectarian program on mining and coordinate the preparation and evaluation, and follow up on institutional, regional and special development programs for small and medium mining and for the social sector;

III. Provide an opinion to the agencies of the Federal Executive in matters falling under the jurisdiction thereof related to the mining metallurgical industry;

IV. Take part with the agencies with jurisdiction in preparing Technical Regulations (Normas Oficiales Mexicanas) pertaining to the mining metallurgical industry, in matters of mine safety and hygiene, health in the work place and ecological balance and environmental protection;

IV. BIS. Issue the technical decisions determined by its own internal Regulations;

V. Submit to the consideration of the Federal Executive drafts of a decree to determine if minerals or substances are susceptible of concession, as well as those related to the incorporation or disincorporation of mineral reserve zones;

VI. Issue concession certificates and mining allotment certificates and resolve upon their nullification or cancellation or the suspension and invalidation of the rights derived therefrom;


VII. Prepare a file and resolve in the terms of this Law and the applicable Law on requests for expropriation, temporary occupancy or the creation of land rights-of-way needed to carry out the exploration, exploitation and beneficiation of minerals or substances subject to the application of this Law;

VIII. Resolve upon controversies that arise in regard to the refusal of persons who beneficiate minerals to receive them from third parties;

IX. Request and receive, on a confidential basis information on the production, beneficiation and final destination of minerals, geology of the mineral deposits and reserves, as well as the economic and accounting status of mining and metallurgical companies;

X. Maintain the Public Registry of Mining and Mineral Cartography and conduct all types of topographical and geodesic surveys in order to maintain the Mining Cartography updated;

XI. Make administrative corrections of errors found in a concession or allotment certificate, following a hearing with the owner and without detriment to a third party;

XII. Verify compliance with the duties and obligations imposed by this Law upon those who engage in the exploration, exploitation or beneficiation of minerals or substances susceptible of concessions and impose administrative sanctions in the event of a default;

XIII. Resolve upon any repeals interposed pursuant to the provisions of this Law; and

XIV. All others expressly conferred upon it by other laws.

The Ministry may request the collaboration of other federal, state and municipal authorities in carrying out its verification authority conferred upon it by this Law.

ARTICLE 8. The Ministry will prepare programs for the development of small and medium mining and the social sector indicated in section II of the preceding article, and will coordinate the action necessary for carrying them into effect.

The Regulations of this Law will establish the mechanisms to implement the programs and actions contemplated in this article and will specify the characteristics of small and medium mining activity by mineral or substance, on the basis of their revenue from sales, total tonnage extracted or their participation in domestic production.

ARTICLE 9. To promote the best possible utilization of the Nation’s mineral resources and generate basic geological information about the National territory, the Ministry will obtain support from the Mexican Geological Survey, a decentralized public agency with its own legal personality and equity, coordinated in sectors by said agency.


     The Mexican Geological Survey shall have its legal address in Pachuca, Hidalgo. Its patrimony will be formed by contributions from the Federal Government, the premiums from the discoveries it makes and the economic payments that come from the Tenders to which this Law refers, the revenues from the services that it provides and the goods that it acquires through any other title.

     The administration of the Mexican Geological Survey will be in the hands of a Board of Directors and its General Director.

The Board of Directors will be formed by:

The head of the Ministry of Economy, who will be the chairman; 

Two representatives from the Ministry of Economy; 

One representative from the Ministry of the Treasury and Public Credit; 

One representative from the Ministry of Social Development;

One representative from the Ministry of the Environment and Natural Resources; 

One representative of the Ministry of Energy; 

One representative from the Mining Development Trust;

     Also, there will be the attendance as guests, with voice but without vote and with a nominative invitation from the President of the Board of Directors, of up to three representatives from organizations from the Mexican private mining sector, one representative of the unions from the mining sector and one representative from organizations of social mining.

     In order for the meetings to be legal the attendance of at least half plus one of its members will be required, as long as the majority of the attendants are representatives of the federal public administration. Their resolutions will be made by majority of the members present and, in case of a tie, the Chairman will have a vote of quality.

     The General Director will be appointed by the President of the Republic, through the head of the Ministry, and it must be a person who meets the requirements indicated in the Federal Law for Para-State Entities.

     The faculties and obligations of the Board of Directors and those of the General Director of this entity will be those listed in the Federal Law for Para-State Entities and its Regulations, as well as those indicated in the Regulations for this Law and the Articles of Incorporation of this Agency.


     The surveillance over the Mexican Geological Survey will be done by a Public Commissioner, holder and substitute, appointed by the Ministry of Public Function, who will attend with voice but without vote to the meetings of the Board of Directors; the attributions of the Commissioner will be those indicated in the Federal Law for Para-State Entities and its Regulations. The foundation for the organization of this agency as well as the faculties and functions that correspond to the different areas of this agency will be ruled by the Articles of Incorporation.

     Labour relations of public servants who work at the Mexican Geological Survey will be ruled by section A) from article 123 of the Constitution and its regulatory laws.

In order for it to comply with its purpose indicated in the first paragraph of this Article, the Mexican Geological Survey will have the following functions:

I. Promote and perform geological, mining and metallurgic research to better use the mineral resources of the country;

II. Identify and quantify the potential mineral resources in the country;

III. Develop an inventory of the mineral deposits in the country;

IV. Provide as a public service geological, geophysical, geochemical and mining information from the National territory;

V. Make and keep updated the Geological Chart of Mexico, in the required scales;

VI. Provide geochemical information about the national territory, obtained according to international standards and determine the geophysical characteristics of the ground and provide an interpretation;

VII. Provide to the small and medium mining sector and the social sector with technical assistance in matters of evaluations of mineral deposits, metallurgical processes and physical-chemical analysis of mineral samples, in order to use them;

VIII. Provide laboratory services and study and interpret chemical, physical-chemical, metallurgical and geological analysis of solid, liquid or gaseous samples;

IX. Participate in shared risk investment funds for exploration;

X. Provide elements of judgment to the Ministry, regarding the determination of minerals and substances that can be concessioned and the incorporation or disincorporation of areas into mining reserves;

XI Coordinate with other public or private entities and institutions, whether Mexican or foreign, that perform geoscientific research;


XII. Provide to external costumers the services described in this article, within the national territory or abroad, through contracts with individuals or corporations, public or private institutions, whether domestic or foreign;

XIII. Provide technical assistance in matters of planning the use of soil, providing studies such as: geological risk, environmental risk, territorial studies, geo-hydrologic and geotechnical studies that are required for that purpose;

XIV. Obtain and preserve the earth sciences information in order to increase the amount of geological, geophysical, geochemical and mining information from the national territory in the hands of this entity, that will be used to serve the public;

XV. Participate in domestic and international geo-scientific meetings;

     XVI. Be a member in the National Council for Protected Natural Areas, according to article 56 bis of the General Law of Ecological Balance and Environmental Protection and its Regulations;

     XVII. Provide geological, geochemical and geophysical information and technical consulting services on the use, current and potential, of mineral resources, which must be required under the terms of article 58 of the General Law of Ecological Balance and Environmental Protection;

     XVIII. Identify and promote before the Ministry the execution of works of infrastructure that promote the development of mining districts;

     XIX. Develop, introduce and adapt new technologies, in order to improve exploration, mining and use of mineral resources of the Nation;

XX. Support the Ministry in all the bidding processes referred to in this Law;

     XXI. Act as a consulting and verification body for the Ministry, at the request of the Ministry, in cases where an expert opinion must be provided and during inspection visits where it participates;

XXII. Certify mineral reserves at the request of the interested party;

     XXIII. Execute agreements by public bidding procedures to carry out the dones and works on the mining claims protected by the Mining allotments issued to them, under the terms provided therefore by the Regulations of this Law;

     XXIV. Determine and adjust the prices for the services that it provides, excepting for those that are determined by an agreement from the Federal Executive;

     XXV. Act in coordination with State authorities in order to promote and disseminate knowledge about geological, mining and metallurgical activities by promoting the


construction of mining museums, providing for this purpose, according to applicable provisions, the budget items that are considered in the agreements entered into for this purpose together with the Governments of the States, and

XXVI. Carry out the activities that are expressly conferred to it in other laws.

CHAPTER SECOND

Mining Concessions, Allotments and Mineral Reserves

ARTICLE 10. The exploration and mining of minerals or substances referred to in article 4, as well as of salterns formed directly by seawater that comes from current seas, whether over the surface or from underground, in a natural or artificial way, and of the salts and their byproducts, these can only be carried out by individuals who have the Mexican nationality, ejidos and agricultural communities, native peoples and communities referred to in article 2o. of the Constitution, recognized as such by the Constitutions and Laws of the Federal States, and corporations incorporated according to Mexican Law, through mining concessions granted by the Ministry.

Exploration in national territory for the purpose of identifying and quantifying the Nation’s potential mineral resources will be carried out by the Mexican Geological Survey, through mining allotments which will be issued only to this entity by the Ministry, the registration whereof is to be published in Mexico’s Official Newspaper.

For public utility reasons or to satisfy future needs of the country, mineral reserve areas may be established by a decree of the Federal Executive published in Mexico’s Official Newspaper. No concessions or mining allotments will be granted over the zones incorporated in said reserves.

Concession and mining allotments certificates and decrees for incorporation of areas into mineral reserves will be issued, provided that the conditions and requirements established in this Law and its Regulations are satisfied, without prejudice to a third party.

ARTICLE 11. Deemed as legally qualified to hold mining concessions are companies incorporated under Mexican Law:

I. Whose corporate purpose involves the exploration or exploitation of the minerals or substances subjects to the application of this Law;

II. That have their legal address in the Mexican Republic, and


III. Wherein any foreign investment participation adjusts to the provisions of the applicable Law.

ARTICLE 12. Every concession, allotment or zone incorporated into mineral reserves will relate to one solid mining block, with an undefined depth, limited by vertical planes, the upper face whereof is the surface of the land upon which its perimeter is determined.

The sides of the perimeter of the mining claim must have an astronomical orientation of North-South and East-West, and the length of each side will be one hundred or multiples of one hundred meters, except when these conditions cannot be satisfied because they border on other mining claims.

The location of the mining claim will be determined on the basis of a fixed point on the land, called the starting point, linked to the perimeter of said mining claim or located thereupon.

The union of the starting point will be perpendicular, preferentially, to either the North-South or East-West sides of the perimeter of the lot.

     Artícle12 BIS. The free area that is located surrounding land protected by mining concessions or allotments and that has a maximum surface of 10 hectares will constitute a mining plot named gap, the concession of which can be requested complying with the following:

     The holder of the mining concession or allotment with a larger bordering perimeter with the gap will have preferential right to be assigned the corresponding concession over that land.

     In case that the above mentioned holder does not exercise his right, preference will then pass to the next holder of a mining concession or allotment with the second largest neighboring perimeter with the gap and so on.

     When there are holders of mining concessions or allotments whose plots have the same bordering perimeter with the gap, preference will be defined through a draw. In case that a person other than the holder indicated in the second paragraph of this article requests the mining concession over the gap, the Ministry will notify, within the next 30 days after the presentation of the appraisal works, to the holders of the mining concessions or allotments that border the gap, so that they may exercise their preferential right according to the above provisions. The interested parties will have a term of 30 days as of the date on which said notifications go into effect for presenting the corresponding concession application.

     If no application is presented to exercise the preferential right over the gap within the term indicated in the above paragraph, the Ministry will issue the title in favor of the original applicant, after complying the conditions and requirements provided in the Law and its Regulations.


ARTICLE 13. Concessions for exploration and mining allotments will be granted upon free land to the first petitioner in time of a mining claim, provided that the conditions and requirements of this Law and its Regulation are satisfied.

     When due to the publication of the declaration of release of a mining plot, in a simultaneous way one or more applications for a mining concession are presented and one or more applications for mining allotment are presented, the applications for concession will have preference for their admittance and processing over the applications for allotment.

     When the plot is located in an area inhabited and occupied by indigenous people or community, and said indigenous people or community request said land simultaneously with the other person or persons, the application from the indigenous people or community will be preferred for granting the mining concession over said land, as long as it meets the conditions and requirements provided by this Law and its Regulations.

In the case of allotments that are canceled or mineral reserve zones that fall under a disincorporation decree, mining concessions may be granted by a bidding procedure before the land is declared free.

The only areas eligible for incorporation in mineral reserves zones are those which have first been explored by the Mexican Geological Survey via an allotment, provided that their incorporation is justified on the basis of the mining potential of the zone, determined by semi-detailed exploration works and dones, and the public utility cause is evidenced, or in the case of minerals or substances considered within the strategic areas over which the State has jurisdiction.

ARTICLE 13 BIS. Bidding procedures whereby the concessions referred to in the preceding article are granted shall guarantee the best economic conditions for the State and will be conducted upon the following rules:

I. The Ministry will publish the invitation to bid at least in Mexico’s Official Newspaper;

II. The rules for the bidding procedure will include as a minimum:

a) A description of the lands or zones in question, the studies conducted thereupon, as well as their location, geological and sampling maps;

b) The requirements for the participants to evidence their legal, technical and economic capacity, and

c) The system for filing the economic proposal and finder’s fee, which may be in a closed envelope or otherwise as determined, and


     d) the clauses of the contract, if that should be the case, should be granted in order to guarantee compliance with the economic payment and the premium for discovery that is offered.

III. Concessions will be granted to the person who evidences compliance with the requirements established in the rules and who presents the best economic bid; for this purpose, to be taken into account only is the economic consideration and finder’s fee offered.

     When the land is located in an area inhabited or occupied by an indigenous people or community and said indigenous people or community participates in the tender, they will have the right to match the best economic proposal that is presented by another bidder, and in case they do, they shall have preferential right with their bid from said indigenous people or community.

ARTICLE 14. Deemed to be free land is land found within national territory, except for land located in or protected by:

I. (Repealed);

II. Zones incorporated in mineral reserves;

III. Current mining concessions and allotments;

IV. Applications for mining concessions and allotments in process;

V. Mining concessions granted through a tender and those derived from them which have been cancelled;

VI. (Repealed)

VII. Plots with respect to which a mining concession has not been granted because the respective bidding procedure was declared abandoned.

In the cases of paragraphs V, and VII, the Ministry will have ninety calendar days from the day following the effective date of the notification of cancellation of the concession or the resolution which declared the bidding procedure abandoned, to publish in Mexico’s Official Newspaper a resolution which determines the holding of a new bidding procedure for all or part of the land, or the declaration whereby the land is declared free.

In all other cases where concessions are canceled or rejected or where applications for concessions or allotments are waived, the Ministry, within fifteen calendar days following the effective date of the respective notification will publish in Mexico’s Official Newspaper a statement declaring the freedom of the respective land.


The lands will be free thirty calendar days after the respective declaration in regard thereto has been published.

When concessions and allotments are canceled by substitution, only the portion of the land that is abandoned, in such case, will be free.

ARTICLE 15. Mining concessions will grant rights upon all the minerals or substances subject to the application of this Law.

Mining concessions will last fifty years, starting on the date of the registration in the Public Registry of Mining and they will be extended for an equal amount of time if the holders did not fall into any of the causes for annulment provided in this Law and they request this extension no later than five years before the end of its life.

Until requests for extension of term are resolved, the concessions wherefore they are formulated will continue in force.

ARTICLE 16. Mining allotments will confer rights in all the minerals or substances subject to the application of this Law and will have an unextendable duration of six years from the date of publication of the respective certificate in Mexico’s Official Newspaper.

Before expiration of the term of each allotment, the Mexican Geological Survey shall render to the Ministry a written report on the results obtained from the works performed, to allow the Ministry to declare:

I. Cancellation of the allotment and the resulting release of the land;

II. Cancellation of the allotment and the execution of one or more bidding procedures to award mining concessions over all or part of the land, as well as the release of any land that is abandoned, or

III. Cancellation of the allotment and incorporation into mineral reserves of all or part of the protected land, as well as the release of any land that is abandoned.

The above resolutions shall be published in Mexico’s Official Newspaper. If any of them are not published before the expiration of the term of the allotment in question, the Ministry shall publish in Mexico’s Official Newspaper their cancellation and the resulting release of the protected land within 30 calendar days following expiration of the term.

ARTICLE 17. When the circumstances which gave rise to the incorporation of a zone into mineral reserves change, the Federal Executive will order its disincorporation by a decree which will be published in Mexico’s Official Newspaper to allow the Ministry to proceed to:

I. Declare the release of the protected land, or


II. Call a bidding procedure for the grant of one or more mining concessions and declare the release of any abandoned land.

If any of the resolutions contemplated in the preceding sections are not published in Mexico’s Official Newspaper within 90 calendar days following the publication date of the disincorporation decree, the land covered by said zone will be deemed to be released on the day following expiration of said term.

ARTICLE 18. When the Ministry finds that the information contained in a concession certificate or mining allotment certificate is erroneous or does not correspond to the land which it should protect under the Law, it will notify the holder, advising him to assert his rights within 30 calendar days and provide the data and documents required of him.

The Ministry will pronounce a resolution on the basis of the answer given by the interested party and the records contained in the file and, if appropriate, will order that the certificate be corrected and recorded in the Public Mining Registry.

CHAPTER THIRD

Rights conferred by Mining Concession and Allotments

ARTICLE 19. Mining Concessions grant the right to:

I. Perform exploration or mining works and dones respectively within the mining claims protected thereby;

II. Dispose of the mineral products obtained from said mining claims through the dones and works performed throughout the term of the concession;

III. Dispose of the lands found within the area protected by the concession, unless they derive from another current mining concession;

IV. Obtain the expropriation, temporary occupancy or creation of land easement needed to carry out the exploration, exploitation and beneficiation works, as well as for the deposit of dumps, tailings, slags and slag dumps, also become underground rights of way through mining plots;

V. Utilize the waters emanating from the works in the mines for their exploration or exploitation, the beneficiation of minerals or substances obtained and the domestic use of personnel employed thereat;


VI. Obtain a preferential right for a concession on the mine waters for any use other than those indicated in the preceding paragraphs, in the terms of the applicable law;

VII. Transfer ownership or the rights established by above paragraphs I to VI to persons legally qualified to obtain them.

VIII. Reduce, divide and identify the surface of the mining claims they protect, or unite the surface with that of other bordering concessions;

IX. Abandon them and the rights derived therefrom;

X. Group two or more of them for purposes of evidencing exploration and exploitation works and activities determined by this law and render statistical, technical and accounting reports;

XI. Request administrative corrections or duplicates of certificates, and

XII. Obtain an extension of the mining concessions for a like duration, pursuant to the provisions of article 15 of this Law.

ARTICLE 20. Exploration and exploitation works and dones for coal in all its varieties, on lands covered by petroleum allotments may only be carried out with the Ministry’s authorization, which will request an opinion from the Ministry of Energy in order to establish the technical conditions to which they will be subject.

Exploration and exploitation works and dones carried out within towns, dams, channels, general communication routes and other public works, on underwater shelves of islands, keys and reefs, on the bottom of the sea, and underground of the exclusive economic zone, in protected natural areas, as well as within the federal shore line zone and natural protected areas may only be performed with the approval, permission, or concession as the case may be, of the authority in charge of said properties, shelves, sea bottoms, underground zones or areas mentioned, in the terms set forth in the applicable precepts.

ARTICLE 21. The Ministry will resolve whether requests for expropriation, temporary occupancy or creation of easements are appropriate, following a hearing with the affected party and a grounded technical opinion. The amount of the indemnification will be determined by an appraisal made by the Commission of Appraisals of National Properties, on the basis of the criteria established in the Regulation of this Law.

In the case of expropriations, the Ministry, when applicable, will submit the respective resolution to the consideration of the Federal Executive.

Expropriations of ejido and communal properties will be subject to the provisions of agrarian laws.


ARTICLE 22. Requests for the reduction, division, identification or unification of mining claims will proceed when the new mining claim or mining claims are included within the area covered by the concession or concessions from which they derive, and that rights of third parties recorded in the Public Mining Registry are not affected.

Once the request has been declared appropriate, the Ministry will issue the new certificate or certificates to substitute for the one or more from which they derive, with the same rights and obligations. In cases of unification, the certificates will be issued for the oldest remaining term.

ARTICLE 23. The transfer of ownership of mining concessions or rights derived therefrom will be effective legally before third parties and before the Ministry as of their recordal in the Public Mining Registry.

When ownership of a concession is transferred the party who acquires it will be surrogated in the rights and obligations thereof. The person who acquires it will be responsible for verifying that the concession is current and that its holder has complied with all obligations. The Ministry may issue, at the request and cost of the interested party, evidence of the foregoing.

A default on contracts and agreements whereby the beneficiary of rights under a concession assumes obligations will be sanctioned by cancellation thereof, but this does not release the holder of the responsibility to satisfy such obligations, if the former does not do so.

Acts, contracts and agreements related to the transfer of ownership of concessions or rights derived therefrom, as well as controversies that arise in connection therewith will be subject to the provisions of mercantile laws for anything not established herein.

ARTICLE 24. Duly prepared waivers of ownership of mining concessions or the rights derived therefrom will be effective as of the filing of the respective writs with the Ministry, when rights of a third party recorded in the Public Mining Registry are not affected.

ARTICLE 25. The grouping of mining concessions will proceed when the mining claims border on each other or form a mining or mining metallurgical unit from a technical and administrative viewpoint as determined in the Regulation of this Law, and provided that their holders have not incurred in the causes for cancellation established therein.

The incorporation or separation of concessions to one or more groups may be effected one time only within a one-year period.

ARTICLE 26. Mining allotments confer the right to:

I. Carry out exploration works and dones within the mining claim protected thereby, subject to the provisions of article 20 of this Law;


II. Obtain temporary occupancy or the creation of land easement needed to carry out the exploration works and dones, according to article 21 hereof;

III. Reduce and identify the surface protected thereby, and IV. Waive them or the rights derived therefrom. Allotments may not be transferred or subjected to liens.

CHAPTER FOURTH

Obligations imposed by Mining

Concessions and Allotments and the Beneficiation of Minerals

ARTICLE 27. Holders of mining concessions, irrespective of the date of their grant, are required to:

I. Perform and evidence the exploration or exploitation works and dones required by this law, under the terms and conditions of this Law and its Regulation;

II. Pay the mining duties established in the applicable Law; 10

III. (Repealed).

IV. Be subject to the general provisions and specific technical Mexican Official standards applicable to the mining metallurgical industry in matters of mine safety and ecological balance and environmental protection;

V. Not remove permanent fortification works, pit props and other facilities required for the stability and safety of the mines;

VI. Conserve at the same place and maintain in good condition the landmark or sign specifying the location of the starting point;

VII. Provide to the Ministry the statistical, technical and accounting reports in the terms and conditions established in the Regulation of this Law, and

VIII. Allow personnel assigned by the Ministry to conduct inspections.


     IX. Provide the Ministry a geological-mining report when the corresponding mining concession is cancelled because its term finished, abandonment, substitution due to reduction, penalty or judicial resolution. The report will describe the exploration and mining works performed in the mining plot, or on the surface that is being abandoned, according to what is provided in the Regulations for this Law.

     The Ministry will deliver to the Mexican Geological Survey this report so that it can be incorporated into the public system of information of said Agency.

     X. Provide the Mexican Geological Survey, in the case of concessions granted through a tender, a report twice a year during the months of January and July of each year, of all the works performed and the production obtained in the mining plot covered by the mining concession, for purposes of controlling payment of the premium for discovery or any other economic payment considered in favor of said body.

Holders of mining concessions granted under a bidding procedure or those, which substitute the former, will be required to pay, in addition, the discovery premium and the economic consideration offered.

When the rights under a concession are transferred, the obligations mentioned in this article will be imposed on the party who acquires them, without prejudice to the provisions of the third paragraph of article 23 of this Law.

ARTICLE 28. The performance of the exploration works and dones shall be evidenced by investments made in the lot covered by the mining concession, or by obtaining economically utilizable minerals. The Regulation of this Law will establish the minimum amounts of the investment to be made or the value of the mineral products to be obtained.

The obligation to perform said dones and works would begin 90 calendar days after the recordal date of the concession in the Public Mining Registry.

Evidencing reports are to be filed with the Ministry during the month of May every year and will refer to works and dones developed from January to December of the immediately preceding year, even in cases of a substitution of concessions for any of the reasons contemplated in this Law.

ARTICLE 29. Proof of the performance of works and dones by the presentation of evidence of investments will be accepted in any form in respect to the following:

I. Direct mining works, such as ditches, wells, slashes, tunnels and all others that contribute to geological knowledge of the mining claim or the mining reserves;

II. Drillings;

III. Topographic, photogrametric and geodesic surveys;


IV. Geological, geophysical and geochemical surveys; V. Physical-chemical analysis; VI. Metallurgical experimentation tests; VII. Development and rehabilitation of mining works;

VIII. Acquisition, lease and maintenance of drilling equipment and development of mining works;

IX. Acquisition, lease and maintenance of equipment for physical-chemical laboratories and metallurgical research;

X. Acquisition, lease and maintenance of work vehicles and for personnel transportation;

XI. Works and equipment used for job safety and the prevention of pollution or restoration of the environment;

XII. Facilities for warehouses, offices, workshops, camp sites, dwellings and services to workers;

XIII. Acquisition, lease, construction and maintenance of works and equipment related to access roads, generation and conduction of electric energy, extraction, conduction and storage of water and infrastructure in general;

XIV. Acquisition, lease and maintenance of equipment for mining, hauling and general services in the mine, and

XV. Acquisition, lease, installation and maintenance of equipment for beneficiation operations and tailings dams.

(Repealed)

Investments will be applied according to the criteria set forth in the Regulation of this Law.

ARTICLE 30. The evidencing of exploitation works and dones required by this law by obtaining economically utilizable minerals will be effected on the basis of the value of the invoices or payment thereof.

ARTICLE 31. The obligation to execute exploration and exploitation works and dones required by this law will be deemed to be temporarily suspended when evidence is provided to the Ministry, at the time of submission of the annual evidence, that it was impossible to execute the works for technical, economic, labor, judicial reasons or force majeure.


The temporary suspension for technical and economic reasons can be evidenced one time only up to a maximum of three consecutive years within a ten-year period.

ARTICLE 32. When the price or demand for a mineral drops and results in a temporary lack of profitability of exploitation in general, the Ministry may reduce the minimum amounts of the investment to be made or the value of the mineral products to be obtained or may grant an extension for compliance. For this purpose, a resolution will be published in Mexico’s Official Newspaper establishing the relevant requirements, the substances and types of deposits affected, the prices whereupon the resolution will be effective and the term thereof.

ARTICLE 33. An area intended to be released or abandoned as a result of a waiver or reduction of a concession will not be subject to mining duties as of the filing date of the respective writ, provided that said requests are favorably resolved by the Ministry. If they are rejected, any unpaid duties, the updated amount and the surcharges established in fiscal laws must be paid.

The Ministry will have twenty calendar days to reject a waiver or reduction request when the conditions or requirements established in this Law and its Regulation are not satisfied.

ARTICLE 34. Owners of mining concessions or those who perform these works and activities under contract shall name as the person responsible for complying with safety standards in the mines an engineer legally authorized to exercise as long as the works involve more than nine workers for coal mines, and more than forty nine workers in the other cases..

The person in charge shall engage basically in verifying compliance with said standards, ensure that the necessary measures are taken to prevent accidents and immediately notify the owner of the exploitation concession or the person who executes these works of any measures that have not been adopted.

ARTICLE 35. (Repealed).

     Article 35 BIS. The report referred to in article 27, fraction IX of this Law, shall describe the exploration and mining works performed in the mining plot or on the surface that is abandoned, according to what is provided in the regulations of this Law, and it must be handed in together with a request for waving or reducing, or within sixty calendar days after the termination of the life of the mining concession or at the notice of its cancellation due to an infraction or judicial resolution. The Ministry will deliver to the Mexican geological Survey said report within sixty calendar days, starting on the date when the Ministry receives it so that the survey can incorporate the report into its public system for information within sixty calendar days of receiving it.


ARTICLE 36. The Mexican Geological Survey as the holder of Mining allotments, and irrespective of the date of issue thereof, will be required to provide the Ministry with a public written yearly report on the results obtained in connection with the works and dones carried out, and to comply with the obligations contained in articles 27, sections II, the relevant parts of IV, V, VI and VIII, of this Law.

ARTICLE 37. Persons who carry out beneficiation works on minerals or substances subject to the application of this Law are required to:

I. Notify the Ministry of the start-up of beneficiation operations.

II. Be subject to general provisions and specific Technical Regulations (Normas Oficiales Mexicanas) applicable to the mining-metallurgical industry in matters of ecological balance and environmental protection;

III. Provide the Ministry with the statistical, technical and accounting reports in the terms and conditions contained in the Regulation of this Law;

IV. (Repealed);

V. Process minerals of small and medium miners and of the social sector under competitive conditions up to a minimum of 15% of the capacity of the installed processing facility, when it is greater than one hundred tons in twenty-four hours, and

VI. Allow personnel commissioned by the Ministry to conduct the inspections in connection with the verification powers conferred upon it by this Law.

ARTICLE 38. The persons referred to in the preceding article will not be required to receive minerals from third parties when:

I. The minerals they intend to introduce do not adapt to the beneficiation system or affect their normal operation;

II. There is evidence that they are receiving minerals from small and medium miners and the social sector for a minimum of 15% of the capacity of the installed processing system; or

III. The mining claims they present for treatment are less than ten tons.

At the written request of the interested party, the person in charge of the beneficiation operation will also be required to give a written and justified explanation for the refusal to receive minerals. In the event of a controversy, the Ministry will resolve as relevant.

ARTICLE 39. In exploration, exploitation and beneficiation activities of minerals or substances, mining concessionaires shall use care to protect the environment and the ecology pursuant to applicable laws and standards.


CHAPTER FIFTH

Nullification, Cancellation, Suspension And Annulment of Rights

ARTICLE 40. Mining Concessions and Allotments will be null and void when:

I. An intent is made to protect with said concessions and allotments, from the time of their grant, the extraction of minerals or substances not subject to the application of this Law;

II. Issued in favor of a person unqualified under this Law to obtain them, or

III. The mining claim, subject of the concession or allotment, covers land all or part of which is not free at the time the respective request is filed, even though the declaration of freedom of said land is published at a subsequent time, except in the case of concessions granted under a bidding procedure.

If the mining claim, subject of the concession or allotment includes some land that is not free, it will be null only in respect to said portion, in which case the Ministry will issue a substitute certificate for the surface which is legally protected, with the same rights and obligations.

ARTICLE 41. Transfers of ownership of mining concessions or the rights thereunder will be null when they are negotiated in favor of a person who is not legally qualified to obtain them.

Nullification will not proceed when it involves an adjudication in payment of credit or by inheritance, and the respective rights are transferred to a legally qualified person within 365 calendar days following the date of adjudication.

ARTICLE 42. Mining concessions and allotments will be canceled by:

I. Expiration of their term;

II. A waiver duly made by a holder;

III. Substitution in connection with the issue of new titles derived from the reduction, division, identification or unification of the area covered by mining concessions;

IV. The commission of any of the infractions indicated in article 55 of this Law, or


V. Court order.

ARTICLE 43. The right to perform exploration or exploitation works and dones required by this law will be suspended when they:

I. Endanger the life or physical integrity of the workers or members of the community, or

II. Cause or are likely to cause damage to public interest property pledged to a public service or private property.

If any inspection detects the possibility of danger or imminent damage, the Ministry will immediately order the provisional suspension of the dones and works, as well as the safety measures to be adopted within the period it stipulates for such purpose. If the orders are not complied with in said period, it will order the definitive suspension of said works and dones.

ARTICLE 44. The reversion of expropriated properties and a declaration of invalidity of temporary occupancy or creation of easement resolutions will proceed when:

I. The dones or works to be developed are not commenced within 365 calendar days following the date of recordal of the respective resolution in the Public Mining Registry, absent force majeure;

II. The done or works to be executed are suspended for one year, except for the cases contemplated in article 31 of this Law;

III. The land, subject thereof, is used for a purpose other than the one that justified the expropriation;

IV. There is a default on payment of the indemnification;

V. The concession on the basis whereof the right to obtain it was exercised is declared null or canceled, except for the causes contemplated in the last paragraph of article 40 and article 42 section III of this Law, or

VI. So ordered by the Court.

In cases of expropriation, the reversion of properties in favor of the affected party will proceed when the cause thereof occurs within five years following the date of notification of the respective decree.

ARTICLE 45. The nullifications indicated in article 40, sections I and III, as well as the suspension or annulment referred to in articles 43 and 44, sections I to V, will be resolved upon the request of the affected party by the procedure determined in the Regulation of this Law.


The nullification’s and cancellations referred to in article 42, section IV, the suspensions and annulments will be declared by the Ministry, respecting the guarantee of hearing of the affected party within 60 calendar days, whereafter the resolution will be pronounced.

CHAPTER SIXTH

Public Mining Registry and Mining Cartography

ARTICLE 46. The Ministry will maintain the Public Mining Registry in which shall be recorded the acts and contracts mentioned below:

I. Certificates of mining concessions, extensions thereof and declarations of their nullification or cancellation;

II. Certificates of mining allotments and declarations of nullification or cancellation thereof;

III. Decrees establishing mineral reserves or which desincorporate areas from mineral reserves;

IV. Resolutions of temporary occupancy and creation of easements, as well as annulment resolutions;

V. Resolutions issued by the judicial or administrative authorities which affect mining concessions or the rights derived therefrom;

VI. Acts or contracts related to the transfer of ownership or concessions or rights derived therefrom, contracts under which a promise is made to execute them, liens or contract obligations created in connection therewith as well as the agreements that affect them;

VII. Companies referred to in article 11 of this law as well as their dissolution, liquidation and amendments of the bylaws of said companies as determined in the Regulation thereof;

VIII. (Repealed).

IX. Preventive notarial notices related to the execution of contracts;

X. Preventive judicial notations derived from claims for denial, correction, amendment, nullification or cancellation of recordals, and


XI. Preventive notations to interrupt the cancellation of recordal of contracts and agreements subject to temporality.

In regard to the provisions of this Law, the acts and contracts indicated in above paragraphs V to XI will be effective against third parties from the date and time of filing at the Ministry of the respective writ; those under sections I and IV, as of their recordal date, and those related to sections II and III, the day of the publication in the Federal Official Gazette.

ARTICLE 47. The acts referred to in paragraphs I to IV of the preceding article will be recorded officially and those related to the remaining paragraphs at the request of the interested party, in order of filing, and when the requirements established in the Regulation of this Law are satisfied.

ARTICLE 48. Anyone may consult the Public Mining Registry and request, at his own cost, certifications of the recordals and documents which gave rise thereto, as well as in respect to the nonexistence of a registration or subsequent recordals in respect to a particular one.

ARTICLE 49. The rights conferred by mining concessions and the acts, contracts and agreements that affect them will be evidence by a recordal of their registration in the Public Mining Registry.

ARTICLE 50. In order to proceed to the auction of a mining concession and the rights thereunder, the Public Mining Registry must issue a certificate on the background data and encumbrances recorded in respect thereto. Said certification shall be attached to the adjudication instruments or to the respective deeds.

ARTICLE 51. The Ministry, through the Public Mining Registry may correct or modify a recordal when requested by the affected party, when the existence of an omission or error is evidenced and when the rights of a third party are not affected or with a bona fide consent from the legitimate party. Cancellation of the recordal of a contract or agreement will also proceed when there is bona fide evidence of the will of the parties.

The recordal of contracts and agreements subject to a temporary period will be deemed to be canceled 90 calendar days following expiration of their term, absent evidence to the contrary.

Claims for denial, correction, modification or cancellation of recordals, which are prejudicial to the rights of third parties as well as those that refer to the nullity thereof, shall be processed judicially.

ARTICLE 52. The Ministry will maintain the Mining Cartography to evidence that mining claims, which are the subject of mining concession and allotment requests, are free. The location and the perimeter of the mining claims covered by current concessions,


allotments and mineral reserves will be represented graphically in said Cartography as well as requests for mining concessions and allotments in process.

Anyone may examine the Mining Cartography and request maps thereof at his own cost.

CHAPTER SEVENTH

Inspections, Sanctions And Appeals

ARTICLE 53. The Ministry, exercising the verification powers conferred upon it by this Law, may conduct inspections in accordance with the following rules:

I. It will name one or more inspectors and will notify them of their appointment and the inspection order.

II. It will notify the person to be inspected of the name of the inspector, the purpose thereof, the elements, data or documents he is to provide, as well as the place, date and time of the inspection for purposes of his appearance or that of his representative.

III. After identifying himself, the Inspector will conduct the inspection at the stated place and date before the person notified or his duly authorized representative. If the place or domicile does not correspond to the person inspected or if the latter refuses to provide the elements, data or documents requested of him, the inspector will draw up an instrument recording the foregoing, signed by two witnesses. In this latter case, it will be deemed that the inspected incurred in a default on his obligations, absent proof to the contrary.

IV. Upon conclusion of the inspection, the inspector will draw up a detailed instrument containing a list of the facts and statements of the inspected, which will be signed by the persons present; if anyone refuses to sign it, record will be made thereof, but said circumstance will not affect the evidentiary value of the document. A copy of said instrument will be delivered to those who sign it.

V. The inspector will render a report to the Ministry on the results of the inspection within a maximum 15 calendar days following the date it was conducted. If the elements of judgment contained in the report are insufficient, the Ministry will order that another inspection be conducted.

VI. The Ministry, on the basis of the report and documentary evidence offered, will set forth the grounds and rationale and will pronounce its resolution.


ARTICLE 54. Infractions of the provisions of this Law will be sanctioned by a cancellation of the mining concession or allotment or a fine.

The infractions will be sanctioned administratively by the Ministry.

ARTICLE 55. Any of the following infractions will be penalized by the cancellation of the mining concession:

I. Under a concession, the exploitation of minerals or substances not subjects to the application of this Law;

II. Failure to execute and evidence the exploration or exploitation works and dones required by this law, in the terms and conditions established in this Law and its Regulation;

III. Failure to pay mining duties;

IV. (Repealed);

V. Failure to pay the finder’s fee or the economic consideration which may be payable, as well as not delivering to the Mexican Geological Survey the reports twice a year referred to in article 27, fraction X, of this law;;

VI. Failure to subject the exploration or exploitation works and dones for coal in all its varieties, on lands covered by petroleum allotments to the technical conditions established by the Ministry;

VII. The execution of exploration or exploitation works and dones required by this law, without the authorizations referred to in article 20 of this Law;

VIII. Grouping concessions which protect mining claims that do not adjoin for purposes of evidencing that they do not constitute one mining or mining metallurgical unit from a technical and administrative point of view, or

IX. Losing the capacity to be a holder of a concession.

In the case of the preceding section, cancellation will not proceed when the company who holds the concession loses its capacity on not conforming to the provisions that regulate foreign investment participation and said circumstance is not remedied within 365 calendar days following the date of occurrence thereof. If this latter circumstance does not occur, the Ministry will take judicial action to auction off the portion of the capital stock that does not conform, and the product thereof will be delivered to the Mexican Geological Survey.

Any of the infractions contained in above sections II, III, VI or VII, where relevant, will be sanctioned by the cancellation of the respective Mining allotments.


ARTICLE 56. Cancellation resulting from an infraction will not proceed when within a period of 60 calendar days from the date on which the interested party is notified of the commencement of the respective procedure, evidence is provided in respect to the causes contemplated in sections II, III, V and VII of the preceding article, respectively:

I. Deliver the undelivered justification report(s) referred to in article 28 hereof, as well as payment of the fine established in article 57, section XI hereof;

II. Payment of omitted mining fees and other accessories derived from a default, according to applicable fiscal provisions;

III. Updated payment of the discovery premium as determined in the Regulation of this Law, and

IV. That the refusal of authorization by the authority in charge of the properties, zone or areas referred to in the second paragraph of article 20 of this Law is subject to an administrative or judicial resolution.

ARTICLE 57. The following infractions will be sanctioned by a fine equivalent to ten to two thousand days of the general minimum wage prevailing in the Federal District:

I. Extracting minerals or substances subject to the application of this Law without being the holder of the mining concession or the respective rights;

II. Unduly impeding the execution of works and dones contemplated in this Law and its Regulation by a person legally authorized to execute them;

III. Removing or destroying permanent fortification works, struts and other facilities needed for the stability and safety of the mines;

IV. Impeding or hindering inspections by personnel commissioned by the Ministry;

V. Not appearing personally or by a duly authorized representative at the inspections conducted by the Ministry, without cause;

VI. Failing to appoint an engineer in charge of complying with safety standards in the mines or ordering him to engage in activities which impede him from carrying out the duties inherent in his position;

VII. Failing to give the notice established in article 34, second paragraph of this Law, regarding the measures required to prevent accidents that are not adopted, when they endanger the life or physical integrity of workers or members of the community, or failing to take the relevant measures, in the event of having received said notice;

VIII. Failing to notify the Ministry of start-up of beneficiation operations;


IX. Refusing to beneficiate the minerals of small and medium miners and of the social sector under competitive conditions, without evidencing cause, pursuant to the provisions of article 37, section V of this Law;

X. Modifying the location or damaging the landmark or the sign which identifies the starting point of a mining claim;

XI. Untimely evidencing the timely execution of exploitation works and dones, required by this law, for purposes of invalidating the cancellation procedure of a mining concession, and

XII. Failing to timely and truthfully render the statistical, technical and accounting reports in the terms and conditions contained in the Regulation of this Law.

In the event of a recurrence, the fine may be up to two times the amount and, in the case of the infraction referred to in section I, up to one hundred times the amount of said fine.

Before imposing the fine, the Ministry will take into account the seriousness of the infraction, the harm and damages that were caused, as well as the background data, personal circumstances and economic capacity of the person responsible for the infraction.

The fines established in this article will be without prejudice to any applicable penal liability.

     Article 57 BIS. It corresponds to the holder of the mining concession, the holder of the cause of it or the holder of the mining allotment, to demand before the competent judiciary authority the illegal extraction and recovery of the minerals or substances that can be granted under concession included within the mining plot covered by the mining concession or allotment.

     It corresponds to the Ministry to claim before competent judiciary authorities the illegal extraction and the recovery of minerals or substances that can be awarded under concession, only when this is done in free areas, mineral reserve zones, areas that correspond to concessions granted through a tender and that later have been cancelled, and plots regarding which the respective tenders have been declared deserted.

ARTICLE 58. The power of the Ministry to verify compliance with the duties and obligations imposed by this Law and to sanction a default on its provisions will extinguish in a period of five years commencing from the date of the default or, if the default is continuous, from the date it ceases. The authority related to payment of mining rights will extinguish as provided by the applicable precepts.

ARTICLE 59. Resolutions pronounced by the Ministry in connection with the application of this Law and its Regulation, may be subject to a revision appeal, according to the provisions in the Federal Law for Administrative Procedures.


TRANSITORY

FIRST. This Law will go into effect 90 calendar days following its publication in Mexico’s Official Newspaper.

SECOND. The Regulatory Law of Article 27 of the Constitution on Mining Matters published in Mexico’s Official Newspaper on December 22, 1975 is repealed and all provisions contradictory to this Law are repealed.

THIRD. For a period of five years from the effective date of this Law, the provision contained in the last paragraph of article 17 of the Regulatory Law of Article 27 of the Constitution of Mining Matters will continue to apply to mining exploitation contracts executed prior to said date that are extended.

FOURTH. Until the Federal Executive issues the Regulation of this Law, the Regulation of the Regulatory Law of Article 27, 1990 will apply in everything not contradictory thereto.

FIFTH. The activities indicated in other laws for the Mining Development Commission will be deemed to be placed in charge of the Council on Mineral Resources.

The Law on the Equity of the Mining Development Commission published in Mexico’s Official Newspaper on January 25, 1939 is repealed.

Mining allotments issued to the Mining Development Commission are canceled and the land they cover is assigned to the Council on Mineral Resources in the terms of this Law and, if applicable, with the duration of the agreements executed in respect thereto.

All other rights, properties and resources comprised by the equity of the Mining Development Commission will be transferred before it is wound up to the Council on Mineral Resources and to the Mining Development Trust, as determined by the Ministry,


and will be surrogated in the pecuniary and labor rights and obligations of said organization.

Labor rights of workers assigned to said organization will be respected according to applicable laws.

The Ministry will proceed to wind up the Mining Development Commission within a period of one year from commencement of the term of this law.

SIXTH. Processes of any kind pending resolution as of the date this Law goes into effect will be handled, in everything favorable to the interested parties, according to the provisions hereof.

Petitions for mining concessions or allotments in process, exploration or exploitation, ordinary or special in national mineral reserves will be resolved by the grant of the respective mining concession certificate or the mining allotment certificate, in the case of the Council of Mineral Resources, provided only that the conditions and requirements established therefore in Law and its Regulation are satisfied.

Applications for a new exploration concession or new exploitation concession will be rejected without further processing by virtue of the provisions of Transitory Articles Seventh and Eighth.

SEVENTH. Exploration concessions in respect to which there has been no cancellation declaration will have a term of six years from the date of their issue, and the work programs inserted in their certificates will be null and void.

Holders of new exploration concessions whose mining claims cover all or part of the area previously protected may file, prior to their expiration, one or more applications for a concession or exploitation applications, in the terms and conditions of this Law and its Regulation.


EIGHTH. Provided that there is been no cancellation declaration, exploitation concessions granted prior to this law will have a duration of fifty years commencing on the date of their issue, and will confer rights to exploit any minerals or substances subject to the application hereof. Work programs inserted in their certificates will be null and void.

Co-existing concessions will confer rights only for exploitation of the minerals or substances subject to the application hereof. Work programs inserted in their certificates will be null and void.

Co-existing concessions will confer rights only for exploitation of the minerals or substances indicated in their certificates and pre-existing concessions upon which they were granted, for the exploration or exploitation of other minerals or substances, so long as the former are in force.

Mining allotments with and indefinite term granted to the Council of Mining Resources will have an unextendable duration of six years commencing on the date this Law goes into effect.

NINTH. Special concessions in national mineral reserves, as well as ordinary and special allotments ins said reserves granted to majority state-owned companies will be substituted by the relevant concessions, with the rights and obligations established in this Law.

Obligations contained in concession certificates or in declarations of special allotment in national mineral reserves, in addition to those indicated in this Law, will be null and void, except when they involve concessions which were granted upon zones incorporated in said reserves or obtained under the preferential right established in the following article, or allotments under a resolution granted after the date of publication of this Law in Mexico’s Official Newspaper.


TENTH. Anyone who on the date this Law goes into effect is carrying out, uder contract, exploration and/or exploitation work on lands protected by mining allotments on their substituting concessions may continue doing so up to their termination, and will have a preferential right to obtain the respective mining concession in the land, subject of the contract, is free and if the obligations contained therein were complied with. The right conferred must be exercised when declaration stating that said land is free goes into effect.

ELEVENTH. Concessions for beneficiation plant issued under other laws will be null and void, and their holders will be exempt from filing the note referred to in article 37, section I of this Law.

TWELFTH. The first proof of exploration and exploitation works and dones must be submitted in May, 1994.

Mexico, D.F., June 17, 1992. Dep. Gustavo Carvajal Moreno, Chairman. Sen. Manuel Aguilera Gómez, Chairman. Dep. Jaime Rodríguez Calderón, Secretary. Sen Antonio Melgar Aranda, Secretary. Signatures.

In compliance wiht the provisions of section I of Article 89 of the Political Constitution of the United Mexican Status, I issue this Decree at the residence of the Federal Executive in Mexico City, Federal District on June twenty-four, nineteen ninety-two, for its publication and observance. Carlos Salinas de Gortari. Signature. The Secretary of the Interior. Fernando Gutiérrez Barrios. Signature.

TRANSITORIES

ARTICLE ONE. This Decree will go into effect on the day following its publication in Mexico’s Official Newspaper, except as provided in Transitory article two below.

     ARTICLE TWO. The reform foreseen in articles 10, 13, 14, 15, 16, 17, 19, 27, 28, 29, 30, 31, 34, 42, 43, 46, 55, 56 and 57 as regards the existence of a single mining concession that confers rights for performing exploration and mining works or activities indistinctly, will go into force when the reforms to the Federal Law of Rights regarding Rights over Mining that adapts to the regime of mining concession foreseen in this decree goes into force.


     ARTICLE THREE. All the legal provisions that are opposed to the contents of this decree are repealed. The Federal Executive must adapt the regulations of this law to the contents of this decree no later than six months after the respective entry into force mentioned in articles one and two transitory above; as long as the corresponding adaptations are not made, it will continue to be in force in everything where it does not oppose the current Law and its amendments and Regulations dated February 10th, 1999.

     ARTICLE FOUR. Exploration concessions and mining concessions current on the date on which the amendments to articles 10, 13, 14, 15, 16, 17, 19, 27, 28, 29, 30, 31, 34, 42, 43, 46, 55, 56 and 57 go into force will be subjected to the provisions of this decree without meeting any additional process, and they will be current for fifty years starting from the date on which the exploration or mining concession was recorded in the Public Registry of Mining.

     Applications for mining concessions being processed will be considered as applications for mining concession under the terms of this decree, mining concession applications being processed for a surface different from the surface of the exploration concession from which they derive will continue until their termination, and their mining concession application in process for a surface that is equal to that of the exploration concession from which they derive will be rejected without any other procedure due to what is provided in the previous paragraph.

     ARTICLE FIVE. The obligations referred to in the second paragraph of article nine transitory of the Mining Law published in the Official Gazette of the Federation dated June 26 th, 1992 will continue to be in force.

     México, D.F., February 22nd, 2005.- Dip. Manlio Fabio Beltrones Rivera, President.- Sen. Diego Fernández de Cevallos Ramos, President.- Dip. Graciela Larios Rivas, Secretary.- Sen. Sara I. Castellanos Cortés, Secretary.- Signatures."

In compliance with what is provided in fraction I of Article 89 of the Political Constitution of the Mexican United States, and in order to be duly published and complied with, I issue this Decree in the Residence of the Federal Executive Power, in Mexico City, Federal District, on the day 26th of the month of April of two thousand five.- Vicente Fox Quesada.- Signature.- The Ministry of the Interior, Santiago Creel Miranda.- Signature.

Taken from The Mexican Ministry of the Economy (Secretaria de Economia) web site: http://www.economia.gob.mx


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

 

APPENDIX 4

Drill Logs and Assays

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006



Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169001  JI0301  26.00  26.85  0.85  41  Strong fractured zone silicified, FeOx filling fract.  -2    0.2    3  7  4  -2  -1  223 
169002  JI0301  82.00  82.80  0.80  91  Fault zone, strong FeOx.  16    -0.1    12  115  36  -2  -1  573 
169003  JI0301  87.12  87.89  0.77  95  Moderately argillized and pyritic zone on graywacke  25    0.2    11  120  46  6  -1  1720 
169004  JI0301  87.89  88.61  0.72  95  Moderately argillized and pyritic zone on graywacke  3    0.1    10  146  52  15  -1  845 
169005  JI0301  88.61  89.33  0.72  95  Moderately argillized and pyritic zone on graywacke  10    0.1    12  121  49  18  -1  870 
169006  JI0301  89.33  89.80  0.47  95  Moderately argillized and pyritic zone on graywacke  8    0.2    11  96  43  11  2  3150 
169007  JI0301  89.80  90.54  0.74  85  Moderately argillized and pyritic zone on graywacke  35    0.2    14  127  53  23  7  168 
169008  JI0301  90.54  93.27  2.73  73  Moderately argillized and pyritic zone on graywacke  -2    0.2    16  111  44  33  3  1340 
169009  JI0301  177.70  178.30  0.60  68  Strong broken zone,milled material on carbonaceous shale  5    0.2    10  160  56  25  -1  173 
169010  JI0301  220.85  221.85  1.00  98  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  5    -0.1    5  83  174  -2  6  96 
169011  JI0301  221.85  222.85  1.00  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  2    -0.1    8  64  107  16  32  80 
169012  JI0301  222.85  223.80  0.95  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  3    -0.1    4  69  87  13  29  96 
169013  JI0301  223.80  225.20  1.40  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  8    -0.1    8  49  40  44  6  61 
169014  JI0301  225.20  226.43  1.23  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  -2    -0.1    5  73  101  15  -1  62 
169015  JI0301  226.43  227.85  1.42  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  34    -0.1    5  66  86  31  -1  79 
169016  JI0301  228.43  229.43  1.00  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  4    -0.1    5  74  126  35  33  91 
169017  JI0301  229.43  230.43  1.00  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  27    -0.1    5  78  123  27  7  78 
169018  JI0301  230.43  231.43  1.00  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  10    -0.1    9  107  185  20  2  122 
169019  JI0301  231.43  232.43  1.00  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  10    -0.1    9  92  171  40  -1  125 
169020  JI0301  232.43  233.48  1.05  100  Intrusive (diabase?), strong argillic alteration. Pyrite diss.  15    0.1    9  86  81  45  -1  96 
169021  JI0301  250.56  252.06  1.50  99  Silicified rock, late calcite and quartz veinlets.  17    -0.1    4  57  104  9  -1  40 
169022  JI0301  252.81  254.31  1.50  98  Silicified rock, late calcite and quartz veinlets.  14    -0.1    4  62  106  8  -1  55 
169023  JI0301  260.45  261.15  0.70  100  Silica + White clay + very fine pyrite filling fractures, silicified  16    -0.1    5  60  113  4  -1  49 
            dioritic intrusive.                     
169024  JI0301  262.50  262.90  0.40  100  Clay + Silica + very fine black mineral filled fractures.  7    -0.1    6  78  102  17  -1  29 
169025  JI0301  269.90  270.46  0.56  100  Intrusive rock, increasing white clay alteration, late calcite  11    0.3    6  59  103  37  -1  34 
            veinlets.                     
169026  JI0301  276.55  278.00  1.45  100  Very thin quartz secondary veinlets.  5    -0.1    5  54  89  -2  -1  41 
169027  JI0301  287.30  287.80  0.50  100  Increasing ferromagnesians minerals probably pyroxenes.  10    -0.1    7  80  94  14  -1  72 
169028  JI0301  290.44  290.90  0.46  100  Increasing white color clay, filled fractures.  14    -0.1    7  44  72  8  -1  51 
169029  JI0301  296.43  297.90  1.47  100  Fracture 40° to core axis, quartz calcite filled. Mod. White  22    -0.1    7  61  105  -2  -1  49 
            clay.                     
169030  JI0301  308.80  309.35  0.55  100  Narrow argillized + Mod. Pyrite zone affecting dioritic intrusive  11    -0.1    12  79  101  8  -1  73 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169031  JI0301  309.93  310.73  0.80 98  Narrow argillized + Mod. Pyrite zone affecting dioritic intrusive  13    0.5    6  74  84  52  -1  75 
169032  JI0301  343.80  344.80  1.00 100  Deformed intrusive and argillized moderately, fine pyrite on  20    0.1    7  68  98  6  -1  52 
          fractures.                     
169033  JI0301  365.04  365.74  0.70 100  Dioritic intrusive, porphyritic texture, white clay fractures.  6    0.3    7  57  105  17  -1  30 
169034  JI0301  400.32  400.62  0.30 100  60° oriented to core axis, quartz filled fracture, vuggy texture  43    3.7    11  108  64  117  3  38 
          and late calcite.                     
169035  JI0301  445.94  447.24  1.30 100  Moderately silicified + white clay and fine pyrite, black color  6    -0.1    7  62  78  4  -1  24 
          very fine grained sulfides?                     
169036  JI0301  447.24  449.23  1.99 100  Moderately silicified + white clay and fine pyrite, black color  5    0.5    7  72  111  44  -1  21 
          very fine grained sulfides?                     
169037  JI0301  450.33  451.33  1.00 100  Moderately silicified + white clay and fine pyrite, black color  4    0.2    7  56  96  52  -1  11 
          very fine grained sulfides?                     
169038  JI0301  451.33  452.33  1.00 100  Moderately silicified + white clay and fine pyrite, black color  4    0.1    29  71  112  17  -1  12 
          very fine grained sulfides?                     
169039  JI0301  504.65  505.05  0.40 93  Mod. Silica + mod. Fine pyrite argillized  14    2.4    9  69  106  318  3  31 
169040  JI0301  507.60  508.95  1.35 98  Mod. Argillized, weakly fine pyrite and fine grained black color  12    1.1    11  51  57  191  -1  22 
          sulfides?.                     
169041  JI0301  515.40  515.70  0.30 95  Mod. Argillized calcite quartz filled fract. 40° to core axis.  27    1.2    12  46  46  92  -1  19 
169042  JI0301  518.65  518.95  0.30 100  Mod. Argillized calcite quartz filled fract., celadonite filled  67    1.5    15  53  49  102  -1  18 
          fractures.                     
169043  JI0301  545.50  546.30  0.80 100  Silicified graywacke, many barren quartz veinlets, pyrite diss.  19    1.2    24  95  10  120  -1  24 
          and patches.                     
169044  JI0301  549.90  550.35  0.45 100  Sandstone, deformed and silicified, fine grains pyrite, chlorite  4    3.8    18  54  20  92  -1  33 
          filled fractures.                     
169045  JI0301  592.85  593.05  0.20 100  Silicified breccia txt. Fragments of fine to medium grained  -2    1.8    16  66  33  52  5  24 
          graywacke.                     
169299  JI0301  592.85  593.05  0.20 100  Silicified breccia, fine to medium grained graywacke, calcite  7    2.6    14  46  31  40  3  270 
          filled fractures, fine pyrite.                     
169299  JI0301  592.85  593.05  0.20 100  Silicified breccia, fine to medium grained graywacke, calcite  7    2.6  -3.4  14  46  31  40  3  270 
          filled fractures, fine pyrite.                     
169300  JI0301  594.55  596.25  1.70 100  Fine grained graywacke, silicified, deformed and fractured.  12    4.0    21  98  63  49  2  25 
          Celadonite horizons.                     
169301  JI0301  596.25  596.45  0.20 52  Boudinage txt. Strongly silicified, pyrite diss  219   38.0    36  49  84  166  6  33 
169302  JI0301  596.45  598.45  2.00* 22  Quartz vein, crustiform txt. 30° to core axis. Mineralized by  10274  11438  200.0     690  2090  157  334  62  14 
          Pyrite, acanthite, Pyrargyrite. Includes 1.5 m void                     
169303  JI0301  598.45  599.24  0.79* 22  Strong silicified shale, black color, dissolution caverns.  44    20.1    19  68  35  55  6  20 
169304  JI0301  599.24  601.00  1.76 100  Strong silicified shales, black color.  55    16.0    16  147  51  85  3  14 
169305  JI0301  601.00  602.28  1.28 100  Strong silicified shales, black color.  67    6.2    18  202  45  1170  59  179 
169306  JI0301  602.28  603.78  1.50 29  Strong silicified shales, black color.  28    4.0    16  298  49  172  7  22 
169307  JI0301  603.78  605.33  1.55 29  Strong silicified shales, black color.  30    4.9    15  133  51  334  12  68 
169308  JI0301  613.85  615.00  1.15 100  Strong silicified shales, breccia txt. Fine pyrite diss28 3.5  17  178  59  91  5  14 
169309  JI0301  615.00  615.60  0.60 100  Strong silicified shales, breccia txt. Fine pyrite diss28 2.8  14  102  56  415  15  20 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169310  JI0301 615.60 616.50 0.90 100   Strong silicified shales, breccia txt. Fine pyrite diss.. 22    4.2    22  120  73  226  7  24 
169311  JI0301 616.55 617.52 0.97 100   Strong silicified shales, breccia txt. Fine pyrite diss..   6    2.8    21  133  54  104  4  21 
169312  JI0301 617.52   618.95   1.43   100   Strong silicified shales, breccia txt. Fine pyrite diss..  2    1.7    13  134  48  134  5  22 
169313  JI0301 618.95  620.80   1.85   100   Strong silicified shales, breccia txt. Fine pyrite diss..   9    1.7    12  115  54  310  14  37 
169672  JI0301 624.62  624.84  0.22  100  Strong silicified bx. Texture  5030      418.3  209  640  125  10  14  22 
169673  JI0301 626.40  628.00  1.60   100   Strong silicified shales, breccia txt. Fine pyrite diss..   14    2.8    25  170  106  128  3  19 
169406  JI0301 655.50  656.00  0.50  100  Quartz-calcite, breccia texture, 60° to core axis, chalcopyrite  5    1.0    16  41  26  19  6  224 
          traces.                     
169406  JI0301 655.50  656.00  0.50  100  Quartz-calcite, breccia texture, 60° to core axis, chalcopyrite  5    1.0  -3.4  16  41  26  19  6  224 
          traces.                     
169407  JI0301 672.05  672.45  0.40  98  Pure silica with hematite, calcite filled fine fractures.  8    0.2    8  10  18  25  -1  50 
169300  JI0301 717.00  717.70  0.70  95  Barren quartz vein, breccia txt. 70° to core axis.  6    0.6    7  18  30  13  -1  213 
169300  JI0301 717.00  717.70  0.70  95  Barren quartz vein, breccia txt. 70° to core axis.  6    0.6  -3.4  7  18  30  13  -1  213 
169409  JI0301A 403.80  403.95  0.15  98  quartz-calcite veinlet 50° to core axis oriented,cubic pyrite +  65    3.3  4.6  10  58  35  127  -1  178 
          chalcopyrite traces.                     
169410  JI0301A 508.74  509.89  1.15  98  strong argillic altered intermediate intrusive  13    1.7  -3.4  11  72  55  262  -1  186 
169411  JI0301A 509.89  510.70  0.81  98  strong argillic altered intermediate intrusive  36    2.3  -3.4  12  46  37  300  4  82 
169412  JI0301A 510.70  512.24  1.54  98  thin quartz veinlet cutting altered intrusive  19    2.2  -3.4  14  38  127  217  2  101 
169413  JI0301A 512.24  513.15  0.91  100  disolution caverns chalcopyrite traces  12    1.1  -3.4  16  35  71  125  -1  64 
169414  JI0301A 513.15  513.89  0.74  100  disolution caverns chalcopyrite traces  9    2.2  -3.4  14  74  207  137  -1  78 
169415  JI0301A 518.09  518.39  0.30  98  calcite branched 70° to core axis oriented, fine grained pyrite  26    1.3  -3.4  27  118  74  110  -1  86 
          and black sulfides.                     
169416  JI0301A 549.14  549.34  0.20  98  quartz veinlet sacaroidal texture 60° to core axis with pyrite  9    0.7  -3.4  8  32  17  39  -1  68 
          traces.                     
169417  JI0301A 588.45  588.60  0.15  100  quartz - calcite veinlet 70° to core axis oriented chalcopyrite  4    1.0  -3.4  9  73  38  14  -1  29 
          traces and acanthyte?                     
169418  JI0301A 600.24  600.55  0.31  100  veinlet zone less than 1 centimeter width, pyrite and  5    3.3  5.5  30  92  128  72  -1  84 
          chalcopyrite traces                     
169419  JI0301A 603.17  603.65  0.48  78  quartz-calcite breccia 40° to core axis oriented, fine  18    6.4  8  15  29  18  55  -1  70 
          pyrite,amathyste quartz and green fluorite.                     
169420  JI0301A 603.65  604.14  0.49  78  quartz vein sacaroidal texture fine cubic pyrite very fine  2123    200.0  609.8  520  279  193  381  185  3530 
          pyrargyrite christals,cpy traces,galena trs.                     
169421  JI0301A 604.19  604.59  0.40  78  quartz veinlet with sacaroidal texture fine piryte  418    200.0  760.4  3650  84  93  202  215  2250 
169422  JI0301A 604.57  605.38  0.81  82  quartz veinlets drussy texture zone, fine pyrite  90    82.0  96.5  340  99  42  102  33  66 
169423  JI0301A 605.38  606.38  1.00  86  quartz pieces on black shale , fine pyrite.  42    14.6  17.8  75  141  51  67  11  53 
169424  JI0301A 606.38  607.73  1.35  37  quartz veinlets argillic alteration zone  34    5.6  8.3  28  129  52  69  6  87 
169425  JI0301A 608.48  609.03  0.55  39  quartz veinlets argillic alteration zone  22    2.7  -3.4  16  102  31  54  1  77 
169426  JI0301A 626.00  626.17  0.17  98  quartz -calcite veinlet 2 centimeter width pyrite + black color  15    2.1  -3.4  20  137  119  50  1  108 
          sulfides, acanthyte? 70° to core.                     
169689  JI0301A 627.25  627.40  0.15  90  Quartz veinlet, 1 cm width, 70° to core axis, Py                     
169427  JI0301A 629.18  629.33  0.15  97  quartz veinlet 3 centimeter width 70° to core axis oriented  8    1.0  -3.4  14  73  47  60  -1  61 
169428  JI0301A 630.12  630.30  0.18  86  quartz veinlet 4 centimeter width 70° to core axis oriented cpy  18    2.9  -3.4  31  97  72  86  -1  68 
          traces.                     
169690  JI0301A 630.83  631.19  0.36  86  Quartz veinlet, 4 cm width, 70° to core axis, traces Cpy                     
169429  JI0301A 635.00  635.24  0.24  94  quartz veinlets argillic alteration zone  22    1.1  -3.4  14  58  46  65  -1  61 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169430  JI0301A 635.46  636.81  1.35  90  milled rock pyrite in fractures  57    22.5  20.7  28  101  101  451  20  249 
169062  JI0302 159.20  161.10  1.90  100  Fine to medium grains sandstone, fractures filled by pyrite  6    0.1    15  87  17  28  2  39 
          and black material.                     
169063  JI0302 168.00  168.60  0.60  100  Altered medium grained sandstone, fractured, pyrite filled  5    -0.1    10  87  18  20  3  37 
          fractures.                     
169064  JI0302 176.30  177.85  1.55  95  Medium grained sandstone, fractured 60° to core axis, fine  8    -0.1    9  123  13  20  -1  19 
          pyrite.                     
169065  JI0302 177.85  179.35  1.50  95  Intercalation of medium grained sandstone and strongly  4    0.1    12  95  14  33  -1  43 
          silicified sandstone.                     
169066  JI0302 179.35  180.85  1.50  95  Intercalation of medium grained sandstone and strongly  2    0.2    13  77  27  30  5  90 
          silicified sandstone.                     
169067  JI0302 180.85  182.00  1.15  95  Intercalation of medium grained sandstone and strongly  157    0.1    14  82  59  36  6  87 
          silicified sandstone.                     
169068  JI0302 182.00  182.90  0.90  98  Intercalation of medium grained sandstone and strongly  9    0.1    14  87  91  46  12  212 
          silicified sandstone.                     
169069  JI0302 182.90  183.45  0.55  98  Intercalation of medium grained sandstone and strongly  4    0.1    10  76  92  117  11  82 
          silicified sandstone.                     
169070  JI0302 183.45  184.95  1.50  98  Strongly altered intrusive, cream color, argillically altered.  4    -0.1    7  105  110  38  3  62 
169071  JI0302 184.95  186.45  1.50  100  Strongly altered intrusive, cream color, argillically altered.  9    -0.1    6  74  105  15  -1  31 
169401  JI0302 184.95  186.45  1.50  100  Strongly altered intrusive, argilic altereid, porphiritic texture  4    -0.1  -3.4  6  77  70  30  3  200 
169403  JI0302 185.60  185.65  0.05  100  Quartz vein, 30° to core axis, mineralized by argentite?,  7    -0.1  -3.4  7  62  156  -2  -1  247 
          pyrite, Cpy.                     
169072  JI0302 186.45  187.95  1.50  100  Strongly altered intrusive, cream color, argillically altered.  1599    -0.1    7  68  62  14  -1  16 
          Quartz vein 5 cm. Width                     
169402  JI0302 186.45  187.95  1.50  100  Strongly altered intrusive, argilic altereid, porphiritic texture  4    -0.1  -3.4  6  68  58  -2  -1  118 
169073  JI0302 187.95  189.45  1.50  98  Strongly altered intrusive, cream color, argillically altered.  7    -0.1    7  64  37  11  -1  17 
169074  JI0302 189.45  190.95  1.50  98  Strongly altered intrusive, cream color, argillically altered.  5    -0.1    7  44  110  -2  -1  64 
169075  JI0302 190.95  192.45  1.50  98  Strongly altered intrusive, cream color, argillically altered.  2    -0.1    8  58  140  20  7  53 
169076  JI0302 192.45  193.95  1.50  98  Strongly altered intrusive, cream color, argillically altered.  -2    -0.1    6  56  62  12  6  65 
169077  JI0302 193.95  195.45  1.50  95  Strongly altered intrusive, cream color, argillically altered.  5    -0.1    5  65  75  15  7  117 
169078  JI0302 195.45  196.95  1.50  95  Strongly altered intrusive, cream color, argillically altered.  2    -0.1    9  62  620  91  92  116 
169079  JI0302 196.95  198.45  1.50  100  Strongly altered intrusive, cream color, argillically altered.  9    0.8    13  108  94  112  17  96 
169080  JI0302 198.45  199.95  1.50  100  Strongly altered intrusive, cream color, argillically altered.  15    7.3    17  132  120  118  29  343 
169081  JI0302 199.95  201.45  1.50  100  Strongly altered intrusive, cream color, argillically altered.  7    1    10  47  35  31  14  47 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169082  JI0302  201.45  202.95  1.50  100  Strongly altered intrusive, cream color, argillically altered.  -2    -0.1    7  58  107  36  15  126 
169083  JI0302  202.95  204.15  1.20  96  Strongly altered intrusive, cream color, argillically altered.  -2    -0.1    8  72  116  19  21  40 
169084  JI0302  312.80  312.95  0.15  96  Silica with hematite, breccia txt, reddish color.  9    -0.1    13  48  22  27  3  35 
169085  JI0302  337.20  338.15  0.95  88  Quartz-calcite vein, smoked quartz, calcite filled around quart  4    -0.1    4  21  12  10  -1  -10 
            fragments.                     
169086  JI0302  526.60  527.60  1.00  100  Silica with hematite, reddish color.  12    1.0  -3.4  13  26  34  27  -1  59 
169404  JI0302  538.28  540.00  1.72  100  Altered intrusive, porphiritic texture, coarse cristal, black  29    2.2  -3.4  2  42  43  1740  9  134 
            mineral sulphides?                     
169405  JI0302  542.60  542.95  0.35  99  Breccia quartz, 40° to core axis, silicified sandstone  154    132.0  135.9  39  318  85  306  20  103 
            fragments, abundant pyrite.                     
169087  JI0302  552.50  553.80  1.30  75  Strongly silicified sandstone, argillically altered. Breccia txt.  24    0.8  -3.4  19  115  61  113  3  59 
169407  JI0302  569.11  569.30  0.19  97  60° to core axis, calcite-quartz veinlet.  3    1.3  -3.4  9  56  32  6  3  172 
169088  JI0302  587.64  588.00  0.36  79  Quartz veinlet with weak pyrite fine+ weak crystallized fluorite  19    2.4  -3.4  14  84  33  2030  83  194 
            veinlets                     
169089  JI0302  592.38  593.10  0.72  90  Quartz branched, veinlets zone with mod. Cubic pyrite fine  74    40.1  44.6  35  43  45  180  3  68 
            grained.                     
169408  JI0302  628.90  630.10  1.20  100  Parallell to core axis calcite-quartz filled fractures, lately filled  4    0.1  -3.4  10  62  28  31  3  132 
            with Kaolin, weakly pyrite cubes.                     
169090  JI0302  652.00  652.15  0.15  98  Quartz + chlorite veinlet, pyrite + black color very fine grained  30    1.8  -3.4  8  139  17  1280  41  110 
            sulfides.                     
169091  JI0302  670.30  670.45  0.15  98  Quartz calcite veinlet, fine grained pyrite+ chalcopyrite traces.  13    1.1  -3.4  7  20  37  44  1  39 
169092  JI0302  698.91  699.15  0.24  100  Calcite veinlet, pyrite.  10    0.8  -3.4  8  14  31  29  3  41 
169093  JI0302  702.05  702.30  0.25  97  Quartz calcite veinlet with fine pyrite + fine grained sphalerite.  13    1.4  -3.4  11  231  18  45  4  23 
169094  JI0302  716.56  716.86  0.30  85  Quartz calcite veinlet, pyrite + black color sulfides and  30    11.9  12.6  51  510  62  146  7  54 
            sphalerite traces.                     
169095  JI0302  734.80  735.15  0.35  100  Quartz calcite veinlet, weakly breccia texture, pyrite,  94    29.9  30.8  294  236  107  1680  16  103 
            pyrargyrite and chalcopyrite.                     
169096  JI0302  736.90  737.10  0.20  80  Quartz veinlet, pyrite arsenopyrite, late kaolin filling fractures.  284    8.6  -3.4  19  103  73  10000  269  153 
169097  JI0302  747.38  747.68  0.30  78  Quartz vein sparse pyrite.  26    1.3  -3.4  16  71  44  171  4  29 
169098  JI0302  755.20  756.33  1.13  100  Coarse grained, quartz crystals mod. Subrounded feldspars.  37    8.4  9.2  43  364  34  175  7  106 
            *                     
169099  JI0302  756.33  758.01  1.68  100  Moderately argillized rock. * Same rock in shift  13    0.7  -3.4  9  94  8  12  -1  49 
169100  JI0302  758.01  759.60  1.59  100  Some subangular lithics of fine grained sandstone.* Same  9    0.5  -3.4  7  78  8  14  -1  67 
            rock in shift                     
169201  JI0302  759.60  760.59  0.99  100  Thin bedded, carbonaceous shale, sandstone layers,  12    2.7  -3.4  36  288  43  38  -1  47 
            intercalated.                     
169202  JI0302  760.53  762.00  1.47  97  Thin bedded, carbonaceous shale, sandstone layers,  4    2.2  -3.4  25  132  41  39  2  46 
            intercalated.                     
169203  JI0302  762.00  762.58  0.58  97  Strong breccia at fault-contact over shale and coarse grained  8    2.6  -3.4  21  312  37  47  8  50 
            rock, strong argillized.                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169204 JI0302  762.58  763.83  1.25  97  Strong breccia at fault-contact over shale and coarse grained  10    1.0  -3.4  10  99  12  78  -1  25 
          rock, strong argillized.                     
169205 JI0302  763.83  764.83  1.00  98  Strong breccia at fault-contact over shale and coarse grained  -2    1.1  -3.4  19  99  16  45  2  20 
          rock, strong argillized.                     
169206 JI0302  764.83  765.73  0.90  98  Strong breccia at fault-contact over shale and coarse grained  -2    1.2  -3.4  12  74  15  23  -1  16 
          rock, strong argillized.                     
169207 JI0302  765.73  766.48  0.75  98  Strong breccia at fault-contact over shale and coarse grained  5    1.9  -3.4  33  195  30  273  2  28 
          rock, strong argillized.                     
169208 JI0302  766.48  766.88  0.40  98  Quartz vein, mineralized by pyrite, pyrrhotite, acanthite,  34    11.1  10.5  347  1140  102  4520  7  23 
          acanthite and sphalerite.                     
169209 JI0302  766.88  767.33  0.45  100  Volcanic conglomerate, very coarse fragments intrusive  14    3.6  -3.4  54  275  60  2320  -1  16 
          altered, sandstone and epidote.                     
169210 JI0302  767.33  768.52  1.19  100  Volcanic conglomerate, very coarse fragments intrusive  63    0.9  -3.4  6  126  21  30  -1  -10 
          altered, sandstone and epidote.                     
169211 JI0302  768.52  770.07  1.55  100  Volcanic conglomerate, very coarse fragments intrusive  3    0.6  -3.4  3  115  20  4  -1  -10 
          altered, sandstone and epidote.                     
169212 JI0302  770.07  770.47  0.40  96  Volcanic conglomerate, very coarse fragments intrusive  -2    0.3  -3.4  2  58  12  -2  -1  -10 
          altered, sandstone and epidote.                     
169213 JI0302  770.47  771.77  1.30  96  Volcanic conglomerate, very coarse fragments intrusive  -2    0.5  -3.4  3  97  23  -2  -1  -10 
          altered, sandstone and epidote.                     
169214 JI0302  771.77  774.24  2.47  95  Volcanic conglomerate, very coarse fragments intrusive  -2    0.5  -3.4  5  116  25  3  -1  -10 
          altered, sandstone and epidote.                     
169215 JI0302  774.24  775.42  1.18  97  Volcanic conglomerate, very coarse fragments intrusive  -2    1.3  -3.4  6  106  39  9  -1  -10 
          altered, sandstone and epidote.                     
169216 JI0302  775.42  776.37  0.95  97  Volcanic conglomerate, very coarse fragments intrusive  -2    1.6  -3.4  4  118  30  6  -1  -10 
          altered, sandstone and epidote.                     
169217 JI0302  776.37  778.57  2.20  97  Volcanic conglomerate, very coarse fragments intrusive  -2    1.9  -3.4  116  217  40  21  -1  -10 
          altered, sandstone and epidote.                     
169218 JI0302  778.57  780.57  2.00  97  Volcanic conglomerate, very coarse fragments intrusive  8    2.0  -3.4  74  362  26  71  -1  -10 
          altered, sandstone and epidote.                     
169219 JI0302  780.57  781.37  0.80  97  Volcanic conglomerate, medium fragments, moderate  7    2.2  -3.4  46  131  34  32  -1  31 
          silicified, dark gray color.                     
169220 JI0302  781.37  783.92  2.55  97  Volcanic conglomerate, medium fragments, moderate  9    2.8  -3.4  21  120  35  36  -1  26 
          silicified, dark gray color.                     
169221 JI0302  783.92  784.72  0.80  97  Volcanic conglomerate, medium fragments, moderate  6    2.1  -3.4  20  153  37  39  -1  37 
          silicified, dark gray color.                     
169222 JI0302  784.72  785.27  0.55  97  Volcanic conglomerate, medium fragments, moderate  15    6.0  -3.4  33  134  56  75  -1  41 
          silicified, dark gray color.                     
169223 JI0302  785.27  786.77  1.50  97  Quartz branched, breccia texture, 50° to core axis, pyrite and  28    38.4  40.3  44  112  170  23  -1  45 
          acanthite?                     
169224 JI0302  786.77  788.92  2.15  97  Silicified sandstone fragments of shale.  -2    3.5  -3.4  29  157  47  52  -1  43 
169225 JI0302  788.92  789.27  0.35  100  Quartz vein , druses and crystals, along middle core very fine  13    8.7  -3.4  30  116  108  52  -1  31 
          acanthite and chalcopyrite.                     
169226 JI0302  789.27  790.00  0.73  100  Silicified sandstone.  5    2.2  -3.4  8  96  43  83  -1  27 
169227 JI0302  790.00  790.95  0.95  100  Quartz vein, branched.  10    4.8  -3.4  267  343  107  506  -1  53 
169228A JI0302  790.95  793.24  2.29  99  Fine to medium grained sandstone, green color.  -2    0.4  -3.4  17  82  6  20  -1  24 
169228A JI0302  790.95  793.24  2.29  99  Fine to medium grained sandstone, green color.  -2      0.4  17  82  6  20  -1  24 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169229  JI0302  793.24  795.42  2.18  100  Fine to medium grained sandstone, green color.      0.6  -3.4  43  202  5  16  -1  31 
169230  JI0302  795.42  797.62  2.20  100  Fine to medium grained sandstone, green color.      0.5  -3.4  19  61  3  9  -1  26 
169231  JI0302  797.62  800.87  3.25  98  Fine to medium grained sandstone, green color.      0.5  -3.4  34  68  3  11  -1  32 
169232  JI0302  800.87  802.70  1.83  100  Silicified volcanic conglomerate, medium grained, black color.      1.4  -3.4  31  164  14  -2  -1  42 
169233  JI0302  802.70  804.52  1.82  98  Intercalation of sandstones and shales, few layers, fine pyrite.      1.6  -3.4  39  135  8  18  -1  17 
169234  JI0302  804.52  806.07  1.55  97  Intercalation of sandstones and shales, few layers, fine pyrite.      0.9  -3.4  29  120  8  19  -1  26 
169235  JI0302  806.07  807.07  1.00  97  Quartz branched, 40° to core axis. Pyrite, sphalerite,  2    1.1  -3.4  131  344  10  16  -1  34 
            Chalcopyrite and galena.                     
169236  JI0302  807.07  808.07  1.00  97  Silicified, black color sandstone, Pyrite patches.  6    0.9  -3.4  64  287  12  39  -1  51 
169237  JI0302  808.07  809.27  1.20  98  Branch quartz, 50° to core axis, sphalerite, Pyrite, galena and  17    2.1  -3.4  18  60  11  603  15  40 
            Chalcopyrite.                     
169238  JI0302  809.27  810.37  1.10  99  Silicified sandstone, few shale layers.  5    1.5  -3.4  63  95  20  66  -1  47 
169239  JI0302  810.37  812.32  1.95  99  Branched quartz, breccia texture, 40° to core axis, Pyrite,  14    1.8  -3.4  24  80  31  701  -1  38 
            Pyrrhotite and traces Chalcopyrite.                     
169240  JI0302  812.32  815.07  2.75  100  Carbonaceous shale, moderate silicified, intercalation  25    6.3  7.1  106  580  96  1130  12  63 
            sandstones.                     
169241  JI0302  815.07  815.29  0.22  100  Quartz-calcite, breccia texture, Pyrite, Pyrrhotite, traces of  116    51.0  52.8  8200  7800  364  10000  252  53 
            Galena and sphalerite.                     
169242  JI0302  815.29  817.47  2.18  100  Carbonaceous shale, with few fine to medium grained  26    4.0  -3.4  60  430  143  274  13  79 
            sandstone layers.                     
169243  JI0302  817.47  819.72  2.25  97  Carbonaceous shale, with few fine to medium grained  15    3.5  -3.4  30  252  178  151  1  57 
            sandstone layers.                     
169244  JI0302  819.72  821.15  1.43  97  Carbonaceous shale, with few fine to medium grained  21    6.7  4.9  75  376  173  683  4  55 
            sandstone layers.                     
169246  JI0302  821.15  822.99  1.84  100  Fine to medium grained sandstone, silicified, few shale layers  23    9.2  10.4  205  540  172  245  2  49 
            pyrite patches.                     
169247  JI0302  822.99  824.58  1.59  98  Fine to medium grained sandstone, silicified, few shale layers  15    5.1  -3.4  59  427  141  208  -1  -10 
            pyrite patches.                     
169248  JI0302  824.58  826.23  1.65  97  Fine to medium grained sandstone, silicified, few shale layers  10    4.5  -3.4  27  253  160  186  -1  30 
            pyrite patches.                     
169249  JI0302  826.23  827.72  1.49  96  Fine to medium grained sandstone, silicified, few shale layers  14    2.8  -3.4  23  186  120  76  -1  30 
            pyrite patches.                     
169250  JI0302  827.72  827.96  0.24  100  Quartz vein, 3 cm. Width, 60° to core axis, Sphalerite, Pyrite,  48    6.1  7.1  134  5600  72  10000  114  24 
            Pyrrhotite, Galena, arsenopyrite                     
169251  JI0302  827.96  829.41  1.45  100  Fine to medium grained sandstone, silicified, few shale layers  15    3.2  -3.4  35  233  148  213  2  26 
            pyrite patches.                     
169252  JI0302  829.41  830.59  1.18  100  Fine to medium grained sandstone, silicified, few shale layers  19    2.0  -3.4  33  202  127  59  -1  21 
            pyrite patches.                     
169253  JI0302  830.59  832.22  1.63  100  Fine to medium grained sandstone, silicified, few shale layers  14    2.6  -3.4  36  242  116  75  -1  34 
            pyrite patches.                     
169254  JI0302  832.22  832.53  0.31  100  Quartz-calcite vein, breccia texture, sphalerite, Pyrrhotite,  112    7.9  8.6  2150  6300  73  10000  90  41 
            Galena, Pyrite, arsenopyrite.                     
169255  JI0302  832.53  834.42  1.89  98  Intercalated shift, fine to medium grained sandstone and blac  16    4.1  -3.4  69  388  129  275  3  33 
            shales, Pyrite patches.                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169256  JI0302  834.42  836.27  1.85  98  Intercalated shift, fine to medium grained sandstone and black  12    4.7  -3.4  68  279  108  67  2  47 
            shales, Pyrite patches.                     
169257  JI0302  836.27  837.85  1.58  98  Intercalated shift, fine to medium grained sandstone and black  17    9.0  8.2  49  318  40  110  2  94 
            shales, Pyrite patches.                     
169258  JI0302  837.85  839.69  1.84  98  Intercalated shift, fine to medium grained sandstone and black  10    4.3  -3.4  39  222  71  120  -1  85 
            shales, Pyrite patches.                     
169259  JI0302  839.69  841.36  1.67  99  Intercalated shift, fine to medium grained sandstone and black  8    2.8  -3.4  30  142  83  58  3  97 
            shales, Pyrite patches.                     
169260  JI0302  841.36  842.58  1.22  99  Intercalated shift, fine to medium grained sandstone and black  10    2.6  -3.4  21  142  78  43  2  99 
            shales, Pyrite patches.                     
169261  JI0302  842.58  842.79  0.21  100  Quartz vein, breccia texture, Sphalerite, Pyrite, Pyrrhotite and  30    7.5  -3.4  430  7700  113  2580  23  49 
            Galena.                     
169262  JI0302  842.79  844.92  2.13  100  duplicate sample  8    2.3  6.1  41  392  82  132  -1  50 
169263  JI0302  842.79  844.92  2.13  100  duplicate sample  4    1.6  -3.4  44  217  55  53  -1  41 
169264  JI0302  844.92  846.60  1.60  98  Fine to medium grained sandstones, few shale layers.  12    2.8  54.3  76  287  81  138  -1  15 
169265  JI0302  846.60  848.20  0.52  98  Fine to medium grained sandstones, few shale layers.  53    3.8  -3.4  380  530  76  823  8  17 
169266  JI0302  848.20  848.72  1.40  97  Quartz vein, 40° to core axis, sphalerite, pyrrhotite, Galena,  8    51.0  -3.4  7800  32500  140  10000  163  59 
            arsenopyrite, Pyrite.                     
169267  JI0302  848.72  850.12  1.40  97  Quartz veinlets hosted in sandstone.  32    3.7  -3.4  243  400  56  1570  8  23 
169268  JI0302  850.12  850.72  0.60  97  Quartz vein, breccia texture, fine Pyrite and Chalcopyrite.  256    8.1  -3.4  38  86  38  10000  49  18 
169269  JI0302  850.72  851.58  0.86  100  Fine to medium grained sandstones, few shale layers.  16    2.5  -3.4  34  157  58  241  -1  28 
169270  JI0302  851.58  852.16  0.58  100  Quartz branched, 30° to core axis, Pyrite and Pyrrhotite,  235    9.5  -3.4  1220  5300  72  10000  149  24 
            sphalerite.                     
169271  JI0302  852.16  853.92  1.76  100  Intercalated shift, fine to medium grained sandstone and black  23    5.7  -3.4  127  355  44  294  3  75 
            shales.                     
169272  JI0302  853.92  856.92  3.00  100  Intercalated shift, fine to medium grained sandstone and black  6    2.3  -3.4  7  323  56  63  -1  54 
            shales.                     
            Intercalated shift, fine to medium grained sandstone and black                     
169273  JI0302  856.92  859.39  2.47  100    4    1.2  -3.4  18  162  69  39  -1  76 
            shales.                     
169274  JI0302  859.39  860.55  1.16  100  Intercalated shift, fine to medium grained sandstone and black  5    2.3  -3.4  22  157  69  67  2  57 
            shales. Increasing shales.                     
169275  JI0302  860.55  860.95  0.40  97  Quartz vein, sphalerite, pyrrhotite, Pyrite and arsenopyrite.  35    10.8  -3.4  2470  8500  63  10000  259  32 
169276  JI0302  860.95  862.92  1.97  97  Carbonaceous shale, bedding 30° to core axis, fine fractures  5    1.6  -3.4  42  243  49  108  3  72 
            calcite filled. Pyrite patches.                     
169277  JI0302  862.92  865.92  3.00  100  Carbonaceous shale, bedding 30° to core axis, fine fractures  -2    1.6  -3.4  25  490  24  72  2  34 
            calcite filled. Pyrite patches.                     
169278  JI0302  865.92  868.92  3.00  99  Carbonaceous shale, bedding 30° to core axis, fine fractures  -2    2.0  -3.4  23  182  75  65  3  55 
            calcite filled. Pyrite patches.                     
169279  JI0302  868.92  871.92  3.00  100  Carbonaceous shale, bedding 30° to core axis, fine fractures  4    4.8  -3.4  38  227  62  77  4  75 
            calcite filled. Pyrite patches.                     
169280  JI0302  871.92  873.55  1.63  100  Carbonaceous shale, bedding 30° to core axis, fine fractures  6    3.4  -3.4  30  240  35  248  6  67 
            calcite filled. Pyrite patches.                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169281  JI0302  873.55  873.98  0.43  100  Quartz vein, Pyrrhotite, sphalerite, Pyrite and traces  2400    66.0  70.3  10000  67500  247  10000  1320  57 
            arsenopyrite.                     
169282  JI0302  873.98  875.70  1.72  100  Carbonaceous shale, fine calcite filled fractures.  21    4.6  -3.4  97  365  41  491  4  52 
169283  JI0302  875.70  875.85  0.15  100  Quartz vein, sphalerite, Pyrrhotite, Pyrite and traces of  88    73.0  66.8  10000  66000  122  10000  350  51 
            Galena. Fine breccia txt.                     
169284  JI0302  875.85  876.19  0.34  100  Carbonaceous shale, fine calcite filled fractures.  30    7.4  4.5  600  3070  43  2740  25  45 
169285  JI0302  876.19  876.58  0.39  100  Quartz vein, sphalerite, Pyrrhotite, Pyrite and traces of  232    19.1  16.8  4160  13900  59  10000  161  32 
            Galena. Fine breccia txt.                     
169286  JI0302  876.58  876.89  0.31  100  Quartz vein, sphalerite, Pyrrhotite, Pyrite and traces of  588    35.0  32.6  5900  120500  103  10000  2180  90 
            Galena. Fine breccia txt.                     
169288  JI0302  876.89  877.92  1.03  100  Quartz vein, sphalerite, Pyrrhotite, Pyrite and traces of  7    2.6  -3.4  177  620  31  1100  9  36 
            Galena. Fine breccia txt.                     
169289  JI0302  877.92  880.10  2.18  99  Carbonaceous shale, fine calcite filled fractures.  10    1.3  -3.4  16  131  36  108  2  40 
169290  JI0302  880.10  880.98  0.88  99  Carbonaceous shale, fine calcite filled fractures.  7    2.1  -3.4  9  130  31  52  3  34 
169291  JI0302  880.98  881.20  0.22  99  Quartz vein, 30° to core axis, Pyrrhotite, sphalerite, Galena,  280    23.1  24.8  4070  10000  178  10000  420  44 
            Traces of arsenopyrite.                     
169292  JI0302  881.20  881.96  0.76  100  Carbonaceous shale, fine calcite filled fractures.  36    5.9  -3.4  234  730  42  10000  18  39 
169293  JI0302  881.96  884.08  2.12  100  Carbonaceous shale, fine calcite filled fractures.  18    4.0  -3.4  54  234  29  263  6  46 
169294  JI0302  884.08  884.25  0.17  98  Branched quartz, breccia texture, Pyrrhotite and Pyrite.  169    12.3  13.6  930  3440  64  2600  320  54 
169295  JI0302  884.25  886.10  1.85  97  Carbonaceous shale, fine calcite filled fractures.  13    3.7  -3.4  166  470  33  466  4  37 
169296  JI0302  886.10  887.50  1.40  96  Carbonaceous shale, fine calcite filled fractures.  7    1.7  -3.4  26  157  30  121  2  32 
169297  JI0302  887.50  889.92  2.42  95  Carbonaceous shale, fine calcite filled fractures.  6    0.9  -3.4  16  159  24  130  1  30 
169298  JI0302  889.92  892.36  2.44  98  Carbonaceous shale, fine calcite filled fractures. Decreasing  4    0.5  -3.4  10  138  29  36  3  38 
            shales.                     
169287  JI0302  blank  blank  blank  100  blank sample  8    0.4  -3.4  60  440  6  357  8  30 
169245  JI0302  standard  standard standard standard standard  78    0.2  -3.4  118  570  297  77  4  45 
169431  JI0303  13.42  14.52  1.10  100  strong FeOx stained + strong kaolynitic fractured zone  6    -0.1  -3.4  15  62  18  21  -1  308 
            moderate quartz veinlets+hematite fracts.filled                     
169432  JI0303  14.52  15.97  1.45  100  strong FeOx stained + strong kaolynitic fractured zone  43    -0.1  -3.4  10  93  17  20  -1  730 
            moderate quartz veinlets+hematite fracts.filled                     
169433  JI0303  39.30  39.75  0.45  100  strong dark redish color Fe Oxides filling weak quartz crystals  8    -0.1  -3.4  15  59  12  12  -1  950 
            fracture.                     
169434  JI0303  87.00  88.00  1.00  100  drussy quartz zone + crystalline quartz veinlets,lately brown  3    -0.1  -3.4  16  57  15  5  -1  820 
            color oxides painted+orbicullar text qz.                     
169435  JI0303  88.00  89.00  1.00  100  all these textures are presents into weakly argillized rhyolitic  -2    -0.1  -3.4  15  52  21  15  -1  429 
            crystal-lithic tuff. This description is                     
169436  JI0303  89.00  90.00  1.00  100  applied to samples from 169434 to 169443.  3    -0.1  -3.4  13  52  21  4  -1  389 
169437  JI0303  90.00  91.00  1.00  100  drussy quartz zone + crystalline quartz veinlets,lately brown  -2    -0.1  -3.4  25  107  21  15  -1  1490 
            color oxides painted+orbicullar text qz.                     
169438  JI0303  91.00  92.10  1.10  100  all these textures are presents into weakly argillized rhyolitic  3    -0.1  -3.4  17  104  20  26  -1  1940 
            crystal-lithic tuff. This description is                     
169439  JI0303  92.10  93.27  1.17  100  applied to samples from 169434 to 169443.  -2    -0.1  -3.4  14  116  13  8  -1  1280 
169440  JI0303  93.27  94.30  1.03  100  drussy quartz zone + crystalline quartz veinlets,lately brown  2    0.1  -3.4  16  173  16  10  -1  1390 
            color oxides painted+orbicullar text qz.                     
169441  JI0303  94.30  95.47  1.17  100  all these textures are presents into weakly argillized rhyolitic  9    -0.1  -3.4  18  93  16  3  -1  17700 
            crystal-lithic tuff. This description is                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169442  JI0303  95.47  96.67  1.20  100  applied to samples from 169434 to 169443.  -2    -0.1  -3.4  16  69  18  -2  -1  36700 
169443  JI0303  96.67  98.16  1.49  100  applied to samples from 169434 to 169443.  5    -0.1  -3.4  23  87  10  20  -1  2550 
169444  JI0303  251.76  252.61  0.85  93  Black shale structural zone with pyrite + calcite.  9    0.1  -3.4  16  80  33  29  -1  216 
169445  JI0303  318.00  318.82  0.82  100  Structure with drussy quartz and strong pyrite, calcite on very  43    0.9  -3.4  10  50  16  750  17  222 
            fine grained sandstone                     
169446  JI0303  454.98  455.28  0.30  100  4 cms width veinlets calcite+ quartz filling a strong fractured  9    0.3  -3.4  12  102  114  95  2  47 
            and white color clay in intrusive.                     
169447  JI0303  470.00  471.07  1.07  100  white color quartz affecting intrusive. Massive texture quartz  3    0.1  -3.4  5  34  84  5  -1  57 
            weak black color sulfides.                     
169448  JI0303  484.91  485.31  0.40  100  10 cms width calcite+late quartz veinlet with fine grained  15    0.3  -3.4  9  60  77  211  -1  35 
            pyrite in weakly silicified intrusive                     
169449  JI0303  493.46  493.60  0.14  100  calcite filling fractures with late quartz cutting calcite fractures  53    0.5  -3.4  10  59  69  2110  6  67 
            on intermediate intrusive.                     
169450  JI0303  564.11  564.71  0.60  99  Quartz +chlorite +calcite on intermediate intrusive.  19    0.1  -3.4  10  61  100  37  -1  35 
169451  JI0303  565.21  565.81  0.60  99  Quartz filling fractures and thin veinlets on intermediate  12    0.1  -3.4  10  47  83  8  -1  37 
            intrusive.                     
169452  JI0303  577.50  578.75  0.25  100  Calcite +quartz filled fractured zone.  8    0.6  -3.4  12  55  20  36  -1  62 
169453  JI0303  579.00  579.15  0.15  100  3 cms width quartz - calcite veinlet with fine pyrite visible.  30    0.5  -3.4  19  13  18  171  -1  88 
169454  JI0303  582.05  582.85  0.80  100  Strong fractured white color clay quartz veinlet and barite  9    1.1  -3.4  16  79  24  271  21  930 
            filling fracture zone on sandstone.                     
169455  JI0303  583.25  584.10  0.85  100  Strong fractured white color clay quartz veinlet and barite  29    1  -3.4  10  120  29  117  9  158 
            filling fracture zone on sandstone.                     
169456  JI0303  586.54  587.44  0.90  98  Strong calcite+ quartz+kaolyn filling fractures, on sandstone  8    0.2  -3.4  15  22  24  25  -1  70 
169457  JI0303  605.30  605.70  0.40  100  Strong calcite + quartz veinlets zone strong fine grained pyrite  33    3.3  -3.4  26  128  56  121  2  65 
            on gray color shale.                     
169458  JI0303  608.50  609.25  0.75  100  Quartz veinlets zone with fine grained pyrite , alteration?  90    1.6  -3.4  25  143  17  414  6  78 
169459  JI0303  687.28  687.53  0.25  100  10 cms width calcite veinlet with fine pyrite and finer gray  70    1.3  -3.4  31  54  36  839  4  53 
            color metalic brightnes mineral.                     
169460  JI0303  695.92  696.17  0.25  100  3 cms width quartz veinlet weak pyrite early calcite filled fract  94    3.6  -3.4  32  125  94  496  4  65 
            on sandstone                     
169461  JI0303  716.42  716.72  0.30  100  10 cms width quartz veinlet with galena+sphalerite traces +   142   14.3  18.4  166  391  44  2170  22  74 
            pyrite on sandstone.                     
169462  JI0303  741.17  741.72  0.55  100  quartz veinlet + quartz bx.  91    6.1  5.5  162  376  319  3710  18  51 
169463  JI0303  763.82  763.96  0.14  100  5 cms banded texture quartz zone with fine grained pyrite.  54    6.3  5.7  20  116  203  120  7  66 
169464  JI0303  805.60  805.60  0.10  100  Calcite veinlet, 3 cm. Width, fine cubic pyrite.  13    1  -3.4  11  92  26  77  4  53 
169465  JI0303  812.55  812.60  0.05  86  Quartz veinlet, 1 cm. Width, pyrite, traces of arsenopyrite or  119    1.3  -3.4  15  63  34  3330  14  85 
            Gn?                     
169466  JI0303  815.05  815.10  0.05  100  Quartz-calcite veinlet, 1 cm. Width, Py traces.  31    1.5  -3.4  13  53  44  171  -1  60 
169467  JI0303  815.82  816.12  0.30  100  3 calcite veinlets, 1 cm width each one, Py, arsenopyrite?  125    2.6  -3.4  14  58  44  3010  9  80 
            traces.                     
169468  JI0303  818.23  818.40  0.17  100  2 calcite veinlets, 1 cm width each one, pyrite.  38    2.8  -3.4  33  96  30  191  -1  52 
169469  JI0303  820.36  820.46  0.10  100  Quartz veinlet, 4 cm. Width, Chalcopyrite and Gn? Traces.  129    2.3  -3.4  6  34  99  2050  39  94 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169470  JI0303  822.74  822.83  0.09  76  Quartz veinlet, 3 cm. Width, Pyrite and Cpy and Gn? Traces.  261    14.6  15.5  307  890  85  1110  7  57 
169475  JI0303  830.20  830.50  0.30  97  Calcite branched, Pyrite.  16    6.9  7.0  154  391  55  67  -1  56 
169471  JI0303  831.64  832.18  0.54  97  Calcite branched, Py traces.  49    13.8  13.3  93  370  40  365  -1  33 
169472  JI0303  832.48  832.57  0.09  96  Quartz veinlet, 1 cm. Width, Pyrite, Cpy and arsenopyrite?  65    4.5  -3.4  19  113  62  885  -1  49 
            Traces.                     
169473  JI0303  833.87  833.92  0.05  96  Quartz-calcite breccia, Pyrite, chalcopyrite traces.  52    4.5  -3.4  31  70  57  609  6  76 
169474  JI0303  834.72  834.75  0.03  22  Quartz fragments, sacaroid texture and white clay, Pyrite  28    0.5  -3.4  5  47  21  38  -1  67 
            traces.                     
169476  JI0304  25.00  25.25  0.25  100  Argilic altereid, cubic pyrite.  -5    -0.1  -3.4  10  39  5  -2  -1  154 
169477  JI0304  31.16  31.71  0.55  100  Argilic altereid, cubic pyrite.  -5    -0.1  -3.4  17  28  5  -2  -1  150 
169478  JI0304  69.05  69.20  0.15  99  Silicified shift and pyrite.  -5    0.1  -3.4  60  108  9  -2  -1  186 
169479  JI0304  91.98  92.30  0.32  100  Volcanic conglomerate, abundant Pyrite and pirrotite? Traces  -5    -0.1  -3.4  11  63  8  -2  -1  97 
169480  JI0304  209.09  210.54  1.45  95  Strongly altereid rhyolithic tuff, FeOx and Kaolin filled  -5    -0.1  -3.4  12  50  6  24  24  1E+06 
            fractures                     
169481  JI0304  276.40  277.10  0.70  92  Siicified sandstone, cubic pyrite and litlle disolution caverns.  -5    0.6  -3.4  2  5  9  699  16  1370 
169482  JI0304  277.10  278.55  1.45  92  weakly argillized sandstone, Py and fibraceous mineral  80    4.1  -3.4  7  25  27  4300  86  303 
            (arsenopyrite?) filled fractures.                     
169483  JI0304  278.55  280.00  1.45  95  weakly argillized sandstone, Py and fibraceous mineral  69    4.9  -3.4  14  41  32  2630  54  196 
            (arsenopyrite?) filled fractures.                     
169484  JI0304  418.30  418.50  0.20  100  Quartz-calcite branched, cubic pyrite and very fine black  16    0.7  -3.4  18  89  56  94  8  161 
            mineral traces.                     
169485  JI0304  430.33  430.68  0.35  100  Calcite branched, Pyrite.  -5    0.1  -3.4  8  29  34  189  4  205 
169486  JI0304  452.33  453.30  0.97  100  Calcite branched, Pyrite.  9    0.6  -3.4  12  95  12  121  -1  86 
169487  JI0304  453.30  454.26  0.96  99  Calcite branched, Pyrite.  18    0.6  -3.4  6  33  13  137  -1  86 
169488  JI0304  454.26  455.93  1.67  99  Calcite branched, Pyrite.  44    0.8  -3.4  4  50  74  166  -1  116 
169489  JI0304  455.93  456.63  0.70  99  60 cms. Zone long parallel to core axis, 5 cms. Width calcite  24    1.2  -3.4  1  10  140  116  -1  68 
            + quartz veinlet.                     
169490  JI0304  456.63  457.00  0.37  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  46    0.7  -3.4  2  28  76  184  -1  104 
            veinlets + pyrite                     
169491  JI0304  457.00  458.56  1.56  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  -5    1.1  -3.4  1  49  114  131  -1  95 
            veinlets + pyrite                     
169492  JI0304  458.56  459.45  0.89  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  22    0.8  -3.4  1  34  90  82  -1  62 
            veinlets + pyrite                     
169493  JI0304  459.45  460.45  1.00  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  17    0.7  -3.4  4  50  85  132  -1  83 
            veinlets + pyrite                     
169494  JI0304  460.95  462.38  1.43  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  18    0.6  -3.4  8  56  49  284  -1  91 
            veinlets + pyrite                     
169495  JI0304  462.38  463.97  1.59  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  21    0.9  -3.4  4  68  102  134  -1  102 
            veinlets + pyrite                     
169496  JI0304  463.97  465.77  1.80  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  13    0.9  -3.4  4  59  87  200  -1  86 
            veinlets + pyrite                     
169497  JI0304  465.77  467.42  1.65  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  9    0.9  -3.4  3  48  96  121  -1  97 
            veinlets + pyrite                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169498  JI0304  467.42  469.57  2.15  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  9    1.5  -3.4  4  96  127  132  -1  101 
            veinlets + pyrite                     
169499  JI0304  469.57  470.22  0.65  100  strong pyritized and fractured zone in intrusive.  33    4.4  -3.4  5  47  75  305  5  121 
169500  JI0304  470.22  471.67  1.45  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  17    7  -3.4  4  73  74  538  14  284 
            veinlets + pyrite                     
169501  JI0304  471.67  472.67  1.00  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  -5    3.4  -3.4  4  68  112  76  -1  229 
            veinlets + pyrite                     
169502  JI0304  472.67  474.22  1.55  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  -5    0.9  -3.4  2  62  46  68  2  202 
            veinlets + pyrite                     
169503  JI0304  474.22  476.32  2.10  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  -5    2.1  -3.4  5  61  86  59  5  206 
            veinlets + pyrite                     
169504  JI0304  476.32  477.82  1.50  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  -5    1.9  -3.4  5  84  95  67  -1  324 
            veinlets + pyrite                     
169505  JI0304  477.82  479.16  1.34  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  -5    1.3  -3.4  4  59  71  61  -1  187 
            veinlets + pyrite                     
169506  JI0304  479.16  480.36  1.20  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  8    4.9  -3.4  3  43  87  100  8  212 
            veinlets + pyrite                     
169507  JI0304  480.36  481.50  1.14  100  1.24 width veinlets zone, quartz veinlets with strong pyrite +  42    5.8  5.1  7  83  24  910  25  990 
            drussy quartz                     
169508  JI0304  481.50  482.44  0.94  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  14    8.6  7.5  8  90  61  525  12  1000 
            veinlets + pyrite                     
169509  JI0304  482.44  483.98  1.54  100  strong argillized porphyritic dioritic intrusive, moderatly quartz  33    16.6  17.3  10  112  81  365  16  1230 
            veinlets + pyrite                     
169510  JI0304  483.98  484.63  0.65  100  quartz veinlet at bottom of sample  -5    2.5  -3.4  9  42  21  101  9  196 
169511  JI0304  484.63  485.36  0.73  100  weakly silicified and late cutted by quartz-calcite+ pyrite  -5    6  5.7  12  109  37  94  22  90 
            veinlets sandstone                     
169512  JI0304  485.36  486.46  1.10  100  weakly silicified and late cutted by quartz-calcite+ pyrite  -5    2.8  -3.4  11  70  61  76  13  136 
            veinlets sandstone                     
169513  JI0304  486.46  488.06  1.60  100  weakly silicified and late cutted by quartz-calcite+ pyrite  5    1.4  -3.4  17  86  33  149  13  82 
            veinlets sandstone                     
169514  JI0304  552.07  552.82  0.75  100  3 cms. Width quartz veinlet on sandstone  -5    0.1  -3.4  3  59  96  -2  -1  57 
169515  JI0304  559.61  560.36  0.75  100  0.75 cms. Width zone strong calcite + quartz veinlet  -5    -0.1  -3.4  4  51  46  13  -1  88 
169516  JI0304  576.25  576.55  0.30  95  10 cms. Width calcite+quartz veinlet with sparse pyrite on it.  -5    0.8  -3.4  20  11  53  44  -1  116 
169517  JI0304  579.05  579.55  0.50  100  2 cms. Width calcite veinlet 50 cms long parallel to core axis.  -5    0.4  -3.4  12  125  35  54  -1  92 
169518  JI0304  586.19  586.49  0.30  100  3 cms. Width calcite veinlet, 30 cms long parallel to core axis.  11    1.7  -3.4  17  116  32  45  4  57 
169519  JI0304  671.50  672.79  1.29  100  calcite veinlet 3 to 5 cms width, and 1.30 mts long parallel to  -5    0.2  -3.4  6  22  15  17  1  35 
            core axis                     
169520  JI0304  673.79  674.09  0.30  100  broken zone on silicified +quartz and pyrite.  -5    0.4  -3.4  10  91  35  28  -1  100 
169521  JI0304  675.06  676.46  1.40  100  moderatly silicified shale with pyrite  -5    0.8  -3.4  14  93  51  72  -1  81 
169522  JI0304  676.46  677.28  0.82  100  5 cms and 15 cms width veinlets zone on silicified shale,  58    3.1  -3.4  17  54  23  680  3  86 
            weakly pyrite.                     
169523  JI0304  677.28  678.98  1.70  100  strong silicified weakly calcite + pyrite zone.  -5    0.3  -3.4  13  59  33  169  -1  73 
169524  JI0304  678.98  680.08  1.10  100  strong silicified weakly calcite + pyrite zone.  10    0.1  -3.4  12  18  107  125  -1  317 
169525  JI0304  680.08  680.83  0.75  100  strong silicified weakly calcite + pyrite zone.  7    -0.1  -3.4  12  74  51  13  -1  118 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169526  JI0304  683.73  685.33  2.40  100  strong silicified rock with pyrite and weakly quartz patches. -5    -0.1  -3.4  22  82  61  16  -1  102 
169527  JI0304  685.33  687.33  2.00  100  strong silicified rock with pyrite and quartz microveinlets. 6    0.1  -3.4  18  56  71  45  -1  84 
169528  JI0304  748.19  748.54  0.35  100  3 cms width calcite veinlet + pyrite 52    1.5  -3.4  18  122  27  161  -1  60 
169529  JI0304  749.09  749.50  0.41  100  calcite veinlet + pyrite. 14    1.3  -3.4  13  160  35  148  -1  71 
169530  JI0304  806.85  808.00  1.15  100  strong fractured calcite filled zone and calcite+quartz veinlets 13    1.1  -3.4  21  103  32  134  -1  86 
            with pyrite associated                    
169531  JI0304  808.00  809.35  1.35  100  strong fractured calcite filled zone and calcite+quartz veinlets 24    1.4  -3.4  15  63  34  191  -1  117 
            with pyrite associated                    
169532  JI0304  835.68  835.98  0.30  98  70° to core axis oriented calcite and less quartz 4 cms width 30    2.7  -3.4  20  89  16  229  -1  103 
            veinlet.                    
169533  JI0304  867.96  868.26  0.30  99  20 cms width veinlets zone calcite + pyrite. 50    26.5  26.7  188  580  20  140  -1  68 
169673  JI0304  910.80  910.95  0.15  100  calcite veinlet, traces of galena + sphal. And black sulfides 85      86.0  295  3340  108  84  -1  30 
169674  JI0304  912.38  912.58  0.20  100  Pre-deformation calcite veinlet, Galena, Py, sphal. Traces, 70 56      87.0  520  1130  38  266  10  28 
            to core axis oriented                    
169534  JI0305  149.68  151.10  1.42  99  Feldespatic fine grained sandstone, Py disseminated. 18    0.1  -3.4  18  90  27  -2  2  148 
169535  JI0305  156.38  158.08  1.70  100  Moderate to strong argillic alteration, composed by Py and -5    1.5  -3.4  14  104  19  57  2  179 
            clays                    
169536  JI0305  238.02  240.00  1.98  99  Strong silicified, moderatly FeOx reddish color and moderatly 11    0.1  -3.4  9  28  35  -2  -1  79 
            pyrite filling fractures                    
169537  JI0305  242.12  242.82  0.70  99  Strong silicified black shale, mod. Piritized and late calcite 12    0.2  -3.4  27  118  423  46  -1  1490 
            veinlets                    
169538  JI0305  242.82  243.52  0.70  100  Strong silicified black shale, mod. Piritized and late calcite 20    0.1  -3.4  40  114  129  25  2  386 
            veinlets                    
169539  JI0305  344.70  345.10  0.40  100  Calcite branching beetwen two fractures, 40 cms. Width, -5    0.7  -3.4  12  59  59  -2  -1  83 
            including pyrite + clay (Kaolin?)                    
169540  JI0305  386.30  386.60  0.30  99  4.5 cms. Width quartz calcite + green color impurities on -5    0.5  -3.4  8  92  43  -2  -1  48 
            calcite veinlet sparse pyrite                    
169541  JI0305  445.64  446.04  0.40  100  30 cms. Width, calcite vein with ligthty green color chlorite -5    0.9  -3.4  3  14  21  -2  3  46 
            impurities coarse grained.                    
169675  JI0305  568.26  568.48  0.22  100  Quartz vein, pre-fluorite green color stage and late calcite 7      1.4  14  65  28  116  -1  47 
169542  JI0305  576.05  576.25  0.20  98  20 cms. Width, amathiste+crystalline quartz, and late calcite, 152    42.5  50.5  63  134  49  406  -1  72 
            drusy+colloidal+banding textures on quartz                    
169543  JI0305  580.45  581.20  0.75  97  3 cms. Width quartz veinlet, strong sphalerite, galena, 108    200  394.8  2370  3190  78  605  23  72 
            achantyte and pyrite                    
169544  JI0305  583.40  583.70  0.30  95  4 cms. Width calcite veinlet 30 cms. Long to core axis 18    6  -3.4  73  97  36  148  -1  61 
            oriented                    
169545  JI0305  585.35  585.75  0.40  92  strong pyritized + drussy quartz zone 29    9.7  -3.4  63  94  71  262  -1  73 
169546  JI0305  585.75  586.20  0.45  92  banded texture, 10 cms. Quartz vein + 20 cms width quartz 104    2.4  -3.4  15  31  29  382  4  65 
            amethyste, pyrite and strong disolution textures                    
169547  JI0305  586.20  587.35  1.15  70  strong broken zone at 586.45 a 25 cms void was reported by 18    6.8  -3.4  101  430  40  179  -1  69 
            drillers an lost water                    
169548  JI0305  587.35  588.84  1.49  47 

strong broken core zone, clay+Py+quartz pebbles

117    38.5  32.5  206  630  60  849  14  55 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169549  JI0305  608.38  608.88  0.50  100  40 cms. Width quartz vein, moderatly to strong piritized, vein  22    7.6  -3.4  28  85  46  44  -1  109 
            is reopened and coarse calcite filled                     
169676  JI0305  646.40  647.06  0.66  94  Calcite filled fracture zone  29      1.8  15  34  32  252  -1  40 
169677  JI0305  679.58  680.13  0.55  100  Calcite veinlet, 4 cms. Width  31      12.9  71  288  42  112  2  302 
169550  JI0305  696.97  697.77  0.80  99  Strong altereid intrusive? Porphiritic texture, silicified, calcite-  -5    1.4  -3.4  39  67  13  68  -1  111 
            quartz filled fractures, fine Py+chlorite                     
169551  JI0305  697.77  699.27  1.50  99  Strong altereid intrusive? Porphiritic texture, silicified, calcite-  -5    1  -3.4  15  76  16  -2  -1  89 
            quartz filled fractures, fine Py+chlorite                     
169552  JI0305  699.27  700.77  1.50  98  Strong altereid intrusive? Porphiritic texture, silicified, calcite-  -5    1  -3.4  11  110  24  -2  -1  83 
            quartz filled fractures, fine Py+chlorite                     
169553  JI0305  700.77  702.22  1.45  98  Strong altereid intrusive? Porphiritic texture, silicified, calcite-  -5    1  -3.4  27  92  35  32  -1  111 
            quartz filled fractures, fine Py+chlorite                     
169554  JI0305  702.22  703.77  1.55  99  Strong altereid intrusive? Porphiritic texture, silicified, calcite-  14    1.7  -3.4  76  242  84  -2  -1  77 
            quartz filled fractures, fine Py+chlorite                     
169555  JI0305  703.77  705.00  1.23  99  Strong altereid intrusive? Porphiritic texture, silicified, calcite-  -5    1.5  -3.4  16  73  32  11  -1  98 
            quartz filled fractures, fine Py+chlorite                     
169556  JI0305  756.46  757.53  1.07  80  Quartz-calcite vein, 40° to core axis, Cpy-Py, acanthyte?  -5    3.1  -3.4  78  97  132  -2  -1  115 
            757.12 lost circulation, calcite, amathist Traces                     
169564  JI0305  774.92  775.17  0.25  100  Quartz-calcite branched, strongly silicified, fine cubic pyrite  209    7.4  9.5  1076  1290  72  832  2  53 
169557  JI0305  775.17  775.57  0.40  100  Calcite-quartz vein, 10° to core axis, fine pyrite 10% sphalerite  66    23.8  21.5  313  4200  46  749  -1  83 
169565  JI0305  775.57  776.10  0.53  100  Fine calcite branch, silicified, Py  -5    5.5  -3.4  298  357  33  162  -1  35 
169566  JI0305  776.10  777.84  1.74  100  Calcite-quartz branch, silicified, Py  76    4  -3.4  152  302  63  2370  10  205 
169567  JI0305  777.84  778.44  0.60  100  Calcite-quartz branch, silicified, Py  21    6.1  -3.4  258  780  31  333  -1  107 
169568  JI0305  778.44  779.20  0.76  100  Calcite-quartz branch, silicified, Py  13    3  -3.4  78  303  25  177  -1  75 
169558  JI0305  779.20  779.37  0.17  100  Quartz vein, 60° to core axis, Py, sphalerite and <galena,  165    200  231.0  7900  52500  431  1370  10  85 
            chalcopyrite traces                     
169569  JI0305  779.37  780.58  1.21  100  > Black shales white abundant calcite filled fractures, py  9    4  -3.4  46  229  24  160  -1  57 
169570  JI0305  800.40  801.22  0.82  100  Calcite branch, strong silicified, two veinlets (1 cm width)  19    19.2  21.4  720  5200  57  399  2  78 
            massive sulphides, 10° to core axis, Py, Sl, Gn                     
169571  JI0305  801.22  802.47  1.25  100  Calcite branch, increasing massive sulphides veinlets (2 cms.  20    36.9  30.2  3770  18600  149  1310  15  108 
            Width) Py, Sl, Gn                     
169560  JI0305  802.47  803.12  0.65  100  Massive sulphides, quartz veinlets filled, 25° to core axis, Py,  29    94  74.9  21500  36500  397  2240  40  71 
            Sl, Gn, Pyrrotite traces.                     
169562  JI0305  803.12  804.27  1.15  100  Massive sulphides, 20° to core axis, Py, Sl, Gn, Cpy traces, <  343    54  43.1  11400  28500  730  990  20  33 
            pyrrotite                     
169563  JI0305  804.27  805.37  1.10  100  Massive sulphides, 20° to core axis, Py, Sl, Gn, Cpy traces, <  246    200  246.8  90500  107500  3540  1510  84  105 
            pyrrotite                     
169572  JI0305  805.37  806.90  1.53  99  Calcite branch, silicified, Py  29    7.6  9.1  720  1480  57  144  -1  89 
169573  JI0305  806.90  807.85  0.95  100  Calcite branch, silicified, Py and Sl traces  32    4.6  -3.4  760  1290  79  173  -1  51 
169574  JI0305  809.11  810.95  1.84  99  Calcite branch few quartz veinlets (2 cms width) Py  40    3.9  -3.4  550  990  54  136  4  37 
169575  JI0305  812.21  813.48  1.27  99  Calcite branched, Py and Galena traces  60    7.9  -3.4  1510  4500  83  154  -1  26 
169576  JI0305  813.48  814.56  1.08  100  Calcite branched, Py, alternance of calcareous fine grained  12    4.6  -3.4  207  430  25  36  -1  58 
            sandstone and black shales, silicified                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169577  JI0305  822.10  823.40  1.30  100  Calcite branch, few fine pyrite  13    5  -3.4  620  1360  45  84  1  41 
169578  JI0305  826.36  827.46  1.10  100  Calcite branch, silicified, Py, Gn and Cpy.  104    43.1  51.0  3270  6000  407  139  14  52 
169579  JI0305  837.39  838.69  1.30  98  Calcite branch, fine py  -5    2.4  -3.4  113  168  16  25  -1  68 
169580  JI0305  840.72  841.12  0.40  98  Quartz-calcite branch, pyrrotite, Py and Cpy traces,  7    4.5  -3.4  122  223  45  74  -1  54 
            increasing black shales silicified.                     
169581  JI0305  846.25  847.15  0.90  97  Calcite branch, fine pyrite  -5    1.3  -3.4  22  71  17  8  1  38 
169582  JI0305  857.07  858.00  0.93  95  Calcite branch, py, increasing fine grained sandstone,  -5    3.1  -3.4  273  680  30  42  -1  36 
            silicified                     
169583  JI0305  858.00  859.03  1.03  88  Calcite-quartz branch, massive sulphides Py, Sl, Gn and Cpy  1217    28.6  30.3  2450  21500  880  218  22  104 
            Traces, chlorite and reddish color by Ox?                     
169584  JI0305  859.03  860.28  1.25  88  Calcite-quartz branch, massive sulphides Py, Sl, Gn and Cpy  606    11.6  18.8  429  1150  770  59  29  63 
            Traces, chlorite and reddish color by Ox?                     
169585  JI0305  860.28  860.84  0.56  100  Quartz vein, 40° oriented to core axis, greenish fluorite color,  117    1.5  -3.4  61  111  97  41  -1  38 
            Py.                     
169586  JI0305  860.84  862.09  1.25  100  Calcite branch, Py and Cpy traces.  17    13.3  17.1  3390  2390  530  21  8  75 
169587  JI0305  862.09  862.74  0.65  100  Calcite branch, rock strongly silicified, Py  27    3.6  -3.4  103  139  30  21  4  63 
169588  JI0305  862.74  863.65  0.91  100  Calcite branch, fine pyrite  23    8.4  10.5  630  790  59  83  10  54 
169589  JI0305  863.65  864.26  0.61  100  Quartz-calcite branched, Py, Sl, Gn and pyrrotite  66    35.4  25.4  8200  20050  190  512  14  34 
169590  JI0305  864.26  865.30  1.04  100  Calcite branch, fine pyrite  16    9.1  10.3  339  430  37  134  -1  47 
169591  JI0305  865.30  865.71  0.41  100  Quartz-calcite branch, Py, Gn, Sl.  80    31.9  25.1  1240  3280  34  149  -1  25 
169592  JI0305  865.71  866.84  1.13  100  Calcite branch, fine pyrite  -5    8.1  -3.4  550  1030  26  72  -1  57 
169593  JI0305  866.84  868.14  1.30  100  Calcite branch, fine pyrite  -5    8.8  -3.4  510  1060  38  75  -1  81 
169594  JI0305  868.14  868.60  0.46  100  Calcite branch, last 15 cm shift quartz vein 40° to core axis,  67    86  77.8  3420  3630  105  109  -1  76 
            Gn and pyrrotite                     
169595  JI0305  887.42  887.84  0.42  100  Calcite-quartz branch, Py and Sl oxided.  -5    5.8  -3.4  1120  A  33  683  -1  81 
169561  JI0305  BLANK  BLANK BLANK BLANK BLANK SAMPLE                     
169559  JI0305  STANDARD STANDARD STANDARD STANDARD STANDARD                    
169678  JI0306  71.33  71.93  0.60  100  Strong silicified + strong FeOx on ignimbrite  -5      1.3  3  8  8  45  -1  284 
169679  JI0306  73.48  74.98  1.50  98  Strong reddish color argillic ignimbrite  18      0.5  4  11  9  76  -1  49 
169680  JI0306  123.75  124.75  1.00  56  Altered ignimbrite by FeOx quartz veinlets  8      0.5  4  8  5  -2  -1  670 
169681  JI0306  144.08  145.08  1.00  80  Strong silicified + FeOx + quartz veinlets ignimbrite  11      0.4  2  4  4  -2  -1  830 
169596  JI0306  609.48  610.20  0.72  100  Strong silicified and argilic altereid, black shales, 70° to core  13    2.6  -3.4  22  145  22  144  -1  135 
            axis, abundant fine Py                     
169597  JI0306  620.04  620.60  0.56  100  Quartz vein, start 60°, 40° exit to core axis, only Py.  11    1.1  -3.4  14  143  39  122  -1  57 
169598  JI0306  623.62  625.12  1.50  95  Strong silicified and argilic altereid, black shales  12    3.8  -3.4  58  370  62  267  9  104 
169599  JI0306  625.12  626.09  0.97  93  Strong silicified and argilic altereid, black shales  17    5.6  -3.4  120  620  23  680  22  125 
169600  JI0306  626.09  627.61  1.52  93  Quartz vein, 60° to core axis, breccia texture (black shales  -5    0.6  -3.4  6  26  12  23  -1  52 
            fragments) fine pyrite, disolution caverns                     
169601  JI0306  627.61  629.11  1.50  95  Incipient jasperoid, silicified, quartz, chalcedony, replacement  21    4.0  -3.4  33  135  128  277  5  212 
            black shales, gray color, fine Py                     
169602  JI0306  629.11  630.61  1.50  99  Incipient jasperoid, silicified, quartz, chalcedony, replacement  13    1.9  -3.4  16  116  152  129  -1  81 
            black shales, gray color, fine Py                     
169603  JI0306  630.61  632.11  1.50  99  Incipient jasperoid, silicified, quartz, chalcedony, replacement  -5    2.0  -3.4  17  141  94  195  6  129 
            black shales, gray color, fine Py                     
169604  JI0306  632.11  633.61  1.50  100  Incipient jasperoid, silicified, quartz, chalcedony, replacement  -5    1.7  -3.4  14  145  79  81  -1  57 
            black shales, gray color, fine Py                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169605  JI0306  633.61  635.11  1.50  100  Incipient jasperoid, silicified, quartz, chalcedony, replacement  10    1.3  -3.4  19  139  108  107  1  90 
            black shales, gray color, fine Py                     
169606  JI0306  635.11  636.66  1.55  93  Incipient jasperoid, silicified, quartz, chalcedony, replacement  -5    1.5  -3.4  24  191  66  92  -1  110 
            black shales, gray color, fine Py                     
169607  JI0306  636.66  638.21  1.55  93  Jasperoid, gray-pinkish tones, 60° to core axis start shift and  -5    1.4  -3.4  22  68  137  52  -1  65 
            30° exit, fine pyrite.                     
169608  JI0306  638.21  639.76  1.55  96  Jasperoid, gray-pinkish tones, 60° to core axis start shift and  -5    1.8  -3.4  8  29  349  204  10  95 
            30° exit, fine pyrite.                     
169609  JI0306  639.76  641.31  1.55  97  Jasperoid, gray-pinkish tones, 60° to core axis start shift and  -5    0.8  -3.4  4  28  81  58  -1  88 
            30° exit, fine pyrite.                     
169610  JI0306  641.31  642.86  1.55  90  Jasperoid, gray-pinkish tones, 60° to core axis start shift and  -5    0.4  -3.4  4  29  47  22  -1  57 
            30° exit, fine pyrite.                     
169611  JI0306  644.80  645.75  0.95  98  Jasperoid gray- ligth brownish color, fine pyrite.  23    0.6  -3.4  14  32  51  70  -1  92 
169682  JI0306  649.85  651.15  1.30  97  Quartz veinlets Py traces  9      1.9  12  142  63  185  4  144 
169612  JI0306  651.20  652.52  1.32  100  Quartz veinlets (4) less < 5 cm. Width, fine pyrite.  -5    1.3  -3.4  15  109  78  158  5  78 
169613  JI0306  654.30  654.60  0.30  100  Quartz veinlets (2) 2 cm. And 1 cm. Width 55° to core axis, py  -5    1.5  -3.4  10  59  22  635  -1  58 
            traces, fluorite and amathist quartz traces.                     
169614  JI0306  660.30  660.60  0.30  100  Quartz branch, sedimentary breccia hosted, white clay and  -5    2.2  -3.4  13  116  44  352  13  105 
            chlorite, pyrite traces.                     
169615  JI0306  660.60  661.00  0.40  98  Quartz veinlet, 8 cm. Width, 60° to core axis, fine pyrite.  11    2.6  -3.4  9  48  29  1330  77  1200 
169616  JI0306  688.93  690.58  1.65  100  Calcite branch, abundant fine pyrite.  -5    0.6  -3.4  12  98  24  27  -1  139 
169683  JI0306  698.47  699.77  1.30  84  Strong silicified black shales  20      4.0  37  259  174  107  -1  64 
169617  JI0306  699.77  701.27  1.50  84  Strong silicified alternance of black shales and medium  6    2.3  -3.4  17  326  110  104  -1  115 
            grained sandstones, many fractured quartz filled, Py                     
169618  JI0306  701.27  702.77  1.50  85  Strong silicified alternance of black shales and medium  -5    1.3  -3.4  28  249  118  87  -1  91 
            grained sandstones, many fractured quartz filled, Py                     
169619  JI0306  702.77  704.27  1.50  63  Strong silicified sandstone, fine fractures(<2 mm width),  -5    3.4  -3.4  12  78  26  183  -1  44 
            quartz filled, cubic pyrite                     
169620  JI0306  704.27  705.77  1.50  63  Strong silicified sandstone, fine fractures(<2 mm width),  -5    4.2  -3.4  22  119  33  85  3  203 
            quartz filled, cubic pyrite                     
169621  JI0306  705.77  707.27  1.50  17  Very broken core, fault?, strong silicified rock fragments,  -5    8.9  9.5  470  1100  27  92  4  85 
            medium grained sandstone, py                     
169622  JI0306  707.27  708.77  1.50  17  Very broken core, fault?, strong silicified rock fragments,  7    3.7  -3.4  32  105  28  332  17  243 
            medium grained sandstone, py                     
169624  JI0306  708.77  710.27  1.50  3  fragments of black shales and medium grained sandstones.  -5    7.2  -3.4  96  309  39  731  23  290 
169625  JI0306  710.27  711.77  1.50  3  fragments of black shales and medium grained sandstones.  42    21.9  23.7  130  336  68  208  18  134 
169627  JI0306  711.77  712.30  0.53  100  Quartz vein, 40° to core axis, crustiform textute, Py, pirargirite  49    38.9  32.0  5600  1710  76  128  22  73 
            and fine Cpy. Druses with quartz chrystalls.                     
169628  JI0306  712.30  713.60  1.30  100  Fine and abundant quartz branch, strong silicified black  59    18.3  22.2  90  50  44  139  8  75 
            shales hosted, fine Py and Cpy traces.                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169629  JI0306  713.60  713.73  0.13  100  Two quartz veinlets ( 5 cm and 2 cm width), 10° to core axis,  1288    183.0  178.4  1390  780  106  270  20  57 
            crustiform texture, fine py, Cpy traces.                     
169630  JI0306  713.73  714.52  0.79  100  Fine quartz branch, chalcedony and smoked quartz, fine py  384    151.0  139.9  530  2360  161  324  44  76 
            and pirargirite? Traces. Black shales hosted                     
169631  JI0306  714.52  715.87  1.35  70  Strong silicified black shales with weakly argilic altereid  11    18.0  -3.4  370  1060  31  137  -1  77 
            medium grained sandstone.                     
169632  JI0306  715.87  716.37  0.50  70  Strong silicified black shales with weakly argilic altereid  -5    9.3  -3.4  50  167  25  35  3  78 
            medium grained sandstone.                     
169633  JI0306  716.37  717.50  1.13  75  Strong silicified black shales with weakly argilic altereid  7    11.1  13.4  39  122  26  84  5  48 
            medium grained sandstone.                     
169626  JI0306  BLANK  BLANK BLANK BLANK BLANK SAMPLE                     
169623  JI0306  STD  STD  STD  STD  STANDARD SAMPLE  STD    STD  STD  STD  STD  STD  STD  STD  STD 
169634  JI0307  192.39  194.05  1.66  95  Strongly silicified rhyolitic ignimbrite abundantly on pyrite  55    1.4  -3.4  22  750  3  1170  72  3570 
169684  JI0307  195.35  196.2  0.85  93  argilic and strong pyrite synter  24      3.5  17  530  17  252  24  70 
169685  JI0307  217.59  217.89  0.3  100  quartz fragments on broken core fine pyrite and white clay  49      6.4  14  77  19  308  43  930 
169686  JI0307  218.54  218.84  0.3  100  quartz veinlet 4 cms width, pyrite + white clay  55      2.6  12  107  16  120  15  530 
169687  JI0307  219.79  219.99  0.2  100  quartz veinlets strong pyrite and polybasite sheets?  105      3.0  11  78  14  337  39  1130 
169635  JI0307  222.39  222.79  0.4  100  strong argillic alteration on rhyol.ignimbrite  90    1.8  -3.4  19  108  8  248  19  580 
169636  JI0307  223.49  224.19  0.7  100  quartz + pyrite filled fracture  32    1.6  -3.4  22  78  12  323  18  840 
169637  JI0307  296.6  296.64  0.04  100  quartz veinlet fine pyrite + black color sulfides traces?  34    20.6  18.4  7  57  42  148  19  81 
169638  JI0307  296.86  296.9  0.04  100  quartz veinlet fine pyrite + black color sulfides traces?  100    32.6  26.7  10  121  61  440  37  34 
169639  JI0307  313.60  315.00  1.4  100  quartz veinlet alongside core axis, on volcanic congl.  107    19.9  21.5  14  192  52  2510  87  970 
169640  JI0307  315.00  316.39  1.39  100  strong silicified rock with thin quartz veinlets.  116    13.0  14.7  12  98  28  2140  109  1280 
169641  JI0307  316.39  317.09  0.7  100  strong silicified sandstone with quartz veinlet along side  74    9.6  10.9  13  83  25  576  36  540 
169642  JI0307  317.09  317.28  0.19  100  3 cms width quartz veinlet bx texture.  58    8.3  6.4  14  44  24  450  22  410 
169643  JI0307  317.28  318.72  1.44  100  fine to medium grained sandstone quartz veinlets sparsely on  37    8.2  5.9  11  68  23  211  14  346 
            it                     
169644  JI0307  318.72  318.82  0.1  100  quartz veinlet pyrite + black color sulfides  31    11.5  12.7  13  84  34  189  17  328 
169645  JI0307  318.82  319.39  0.57  100  strog silicified sandstone with pyrite  24    6.7  5.5  14  33  29  260  10  880 
169646  JI0307  319.39  319.72  0.33  100  silicified black shales fine quartz veinlet(2 cms)  42    16.8  18.6  19  72  50  417  25  480 
169647  JI0307  319.72  319.97  0.25  100  quartz branched  41    8.9  10.2  25  127  32  437  35  420 
169648  JI0307  319.97  320.44  0.47  100  quartz veinlet fine pyrite  44    15.8  16.9  14  161  40  515  19  209 
169649  JI0307  320.44  320.83  0.39  100  quartz veinlet fine pyrite, black sulfides and pyrargyrite traces?  560    200.0  593.4  30  151  106  216  74  58 
169650  JI0307  320.83  321.29  0.46  100  argillic alteration on black shales fine pyrite  920    24.1  26.7  27  223  47  816  38  550 
169651  JI0307  321.29  322.12  0.83  100  strong silicified black color shale with fine pyrite less a  67    9.5  8.8  20  179  28  260  13  211 
            cm.quartz veinlet                     
169652  JI0307  322.12  322.33  0.33  100  quartz veinlet bx texture  85    12.1  13.6  16  136  40  571  67  420 
169653  JI0307  322.33  323.03  0.7  100  strong silicified black shale fine quartz branched.  537    200.0  328.0  59  420  127  970  200  740 
169654  JI0307  360.39  360.72  0.33  100  quartz vein crustiform text.py + acanthyte?  775    200.0  542.8  30  124  91  76  72  15 
169655  JI0307  360.72  360.97  0.25  100  strong silicified black color shale fine py.  54    39.5  34.9  24  98  31  159  15  490 
169656  JI0307  377.72  378.27  0.55  100  quartz branched alongside core.  122      118.0  31  178  41  70  15  62 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
169688  JI0307  428.05  428.25  0.2  100  1 cm width quartz veinlet with strong pyrite  19      2.7  8  17  21  1780  69  860 
169657  JI0307  445.85  446.15  0.3  95  quartz vein, strong pyrite and white clay.  24      5.6  8  95  24  290  20  1410 
169658  JI0307  462.28  462.9  0.62  100  parallel to core axis calcite veinlet oriented  40      8.8  12  57  24  24  -1  79 
169659  JI0307  463.36  464.71  1.35  100  calcite veinlet 2 cms. Width alongside core axis  23      4.3  14  97  32  45  -1  27 
169660  JI0307  471.52  472.22  0.7  100  calcite veinlet alongside core axis oriented 1 cm width  20      1.9  11  98  33  22  -1  26 
169661  JI0307  513  514.1  1.1  100  weakly silicified, weakly pyrite and quartz branched black col  116      6.3  18  90  32  658  21  60 
            shale                     
169662  JI0307  520.6  520.75  0.15  100  2 cms. Width quartz veinlet  19      5.3  23  68  29  774  28  75 
169663  JI0307  592.98  593.14  0.16  99  quartz + fluorite 2 cms. Width veinlet  20      2.3  7  117  77  109  6  80 
169664  JI0307  593.38  593.43  0.05  67  quartz + fluorite 2 cms. Width veinlet  53      6.7  7  151  50  274  14  223 
169665  JI0307  601.88  602.03  0.15  100  quartz veinlet late calcite filling drussy text.  16      3.1  15  93  25  13  2  72 
169666  JI0307  626.97  627.2  0.23  98  coarse crystalls of calcite on veinlet  -5      0.7  10  13  4  -2  -1  31 
169667  JI0307  666.59  666.91  0.32  99  3 cms. Width calcite veinlet  9      0.9  9  14  9  -2  -1  37 
169668  JI0307  690.68  691.03  0.35  100  quartz - calcite veinlet  14      1.6  6  27  7  57  -1  25 
169669  JI0307  693.57  695.42  1.85  100  quartz vein, some drussy texture late calcite filled black color  21      6.4  4  8  17  -2  -1  21 
            sulfides trs.                     
169670  JI0307  695.42  696.22  0.8  100  quartz branched, weakly pyrite  21      4.2  9  23  27  345  4  44 
169671  JI0307  798.17  798.43  0.26  100  quartz veinlet  13      3.1  14  56  43  10  -1  34 
31644  JI0408  28.46  29.77  1.31  68  Moderate silicified Rhyolitic, broken core by fractures, FeOx  -5    0.1    23  46  1  14  -1  201 
            filled fractures                     
31645  JI0408  29.77  32.20  2.43  72  Strong argillic altereid, 1 cm horizonts FeOx Fault?  11    0.1    40  83  2  23  -1  550 
31646  JI0408  32.20  33.30  1.10  90  Strong argillic altereid, few FeOx  10    0.1    18  107  1  10  -1  342 
31647  JI0408  33.30  33.80  0.50  90  Strong argillic altereid, increasing FeOx  -5    0.2    57  164  7  69  -1  1150 
31648  JI0408  33.80  35.05  1.25  94  Strong argillic altereid, decreasing FeOx  6    0.1    19  126  11  15  -1  890 
31649  JI0408  35.05  36.15  1.10  97  Alternance of argillic altereid and FeOx in 30 degrees to core  -5    0.2    22  151  21  43  -1  1940 
            axis                     
31650  JI0408  63.98  64.33  0.35  95  Argillic altereid, Breccia txt. Silicified rhyolitic hosted  9    0.1    27  253  3  113  11  840 
31660  JI0408  75.43  76.03  0.60  97  Strong argillic altereid, cubic Py. Contact Rhyolitic-sandstone  8    0.1    25  164  10  8  -1  1430 
31661  JI0408  76.03  76.70  0.67  97  moderate argillic altereid alternence with weak chlorite,  -5    0.2    37  261  12  6  -1  85 
            conglomerate txt.                     
31662  JI0408  113.85  114.10  0.25  100  Calcite breccia, sandstone angular shape fragments, Py  10    0.2    18  51  14  11  -1  54 
31663  JI0408  146.38  146.68  0.30  97  Calcite breccia txt.subangular shape fragments  -5    0.1    14  46  5  9  -1  81 
31664  JI0408  222.10  222.20  0.10  100  Quartz veinlet, 2 cm width, 60 degrees to core axis, Py traces  8    0.1    11  43  10  28  -1  248 
31665  JI0408  223.10  223.35  0.25  100  Breccia txt, quartz veinlets, chlorite  -5    0.1    13  63  13  19  -1  630 
31666  JI0408  269.85  270.10  0.25  98  Breccia txt quartz weakly argillic altereid by fractures.  10    0.3    24  183  77  8  -1  348 
31667  JI0408  311.07  311.67  0.60  99  Argillic altereid zone, quartz veinlets and black minerals?  9    0.2    14  54  98  12  -1  161 
31617  JI0408  344.50  344.70  0.20  98  Calcite veinlet and breccia txt. 20 cm width 50 to core axis  22    11.8    21  126  67  663  40  303 
            cream color filled voids Py traces                     
31618  JI0408  350.80  351.30  0.50  97  calcite veinlets zone, 50 cm width 60 to core axis, Py.  -5    0.2    6  59  69  -2  -1  59 
31620  JI0408  363.65  364.24  0.59  98  Moderate argillic altereid, 15 % fine Py.  7    0.2    10  57  54  18  19  236 


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
31619  JI0408  364.24  364.46  0.22  98  Moderate argillic altereid zone, fractures 50 to core axis  8    0.2    12  58  47  13  9  244 
            abundant fine Py.                     
31621  JI0408  396.65  396.90  0.25  99  Silicified black shales calcite veinlets 60 to core axis. Py  -5    0.3    15  88  22  17  4  58 
31622  JI0408  405.25  405.65  0.40  99  Fault zone with whitw calcite-quartz veinlets associated,  -5    0.2    7  31  13  21  1  61 
            sandstone hosted                     
31623  JI0408  426.60  427.10  0.50  99  Fault zone, 70 to core axis, associated Py  12    0.2    13  60  25  31  2  76 
31624  JI0408  432.82  434.22  1.40  35  Fault zone, abundant Py fine quartz veinlets broken core  21    0.6    15  120  65  494  10  68 
31625  JI0408  434.22  435.65  1.43  77  Intense broken core, shale hosted whit fault zone Py  12    0.6    12  102  76  196  5  92 
            associated                     
31626  JI0408  442.57  444.27  1.70  50  Fault zone and piritized block shale quartz veinlets  8    1    26  114  101  271  19  255 
31627  JI0408  444.27  446.00  1.73  52  Broken core, fault zone? Fine Py  22    11.8    21  126  67  663  40  303 
31628  JI0408  467.60  467.97  0.37  93  Argillic altereid with black shale fragments, weak silicified  26    0.3    13  43  40  40  3  30 
31629  JI0408  467.97  468.33  0.36  93  Strong white clay alteration with fine veinlets and diss. Py,  10    0.5    16  20  137  142  6  84 
            very fine black veinlets sulphides?                     
35269  JI0408  467.97  468.33  0.36  93  DUPLICATE SAMPLE  13    1.1    13  24  128  106  -1  53 
31630  JI0408  468.33  468.98  0.65  93  Diabase dike? Strong argillic altereid scarce very fine quartz  -5    0.4    12  57  122  51  4  40 
            py. Veinlets                     
31668  JI0408  515.90  516.25  0.35  96  Quartz veinlet, 60 to core axis Intrusive hosted, py.  15    0.2    11  47  95  3  -1  21 
31669  JI0408  519.45  520.45  1.00  100  Calcite-quartz veinlets zone, weak silicified 50 to core axis,  -5    0.1    10  40  74  20  -1  26 
            Py.                     
31631  JI0408  629.36  630.14  0.78  65  Fault zone, strong clays and moderate Py inside veinlets and  1347    13.1    67  234  113  7210  46  75 
            diss.                     
35270  JI0408  629.36  630.14  0.78  65  DUPLICATE SAMPLE  1298    12.9    53  314  119  7770  27  86 
31632  JI0408  644.69  645.36  0.67  97  Quartz -calcite veinlets and weak bx. Hosted in black shales  15    0.3    17  94  33  61  3  37 
31633  JI0408  650.29  651.44  1.15  98  Py veinlets, strong chloritized basic intrusive  9    1.3    15  61  112  39  -1  27 
31634  JI0408  651.44  652.65  1.21  97  Strong fine veinlets quartz -py, intrusive hosted  10    0.9    13  46  97  29  -1  34 
31636  JI0408  651.70  652.28  0.58  97  Quartz veinlet + py hosted in bassic intrusive  -5    1.6    11  54  115  109  -1  30 
31635  JI0408  652.65  652.85  0.20  97  Calcite + quartz vein scarce py  10    0.5    9  49  99  27  -1  36 
31637  JI0408  653.36  653.53  0.17  97  Quartz vein hosted in bassic intrusive  219    2.3    29  65  68  3610  29  55 
35271  JI0408  653.36  653.53  0.17  97  DUPLICATE SAMPLE  317    4.8    36  100  70  5060  18  19 
31638  JI0408  653.53  653.81  0.28  99  Basic dike w/92 veinning py diss. And in vein  -5    1.6    8  67  131  91  -1  22 
31639  JI0408  656.23  656.36  0.13  98  White quartz vein in shale hosted (2-3cm width) scarce py  -5    0.6    15  70  28  61  3  74 
            associaded + - 70° R C                     
31640  JI0408  659.74  659.94  0.20  97  Quartz vein shale hosted (2 - 3 cm width)  19    0.5    16  44  10  1530  9  89 
35273  JI0408  659.74  659.94  0.20  97  DUPLICATE SAMPLE  36    0.8    16  51  39  1290  3  50 
35274  JI0408  663.23  663.40  0.17  99  1 cm width quartz vein sandstone hosted, scarce py  23    1.6    24  54  55  675  2  18 
            associated                     
35275  JI0408  664.34  664.48  0.14  99  Fine quartz vein 0.7 cm scarce py  16    0.8    5  39  25  2030  -1  11 
35276  JI0408  665.45  665.60  0.15  99  Quartz vein 1cm width 60° tca. Py. Aspy. Chalcopy?  197    0.9    12  51  56  1820  6  12 
35277  JI0408  667.79  667.93  0.14  99  Argillized. Sil. Structure w/ fine py and black mineral?  15    0.5    10  54  24  23  -1  14 
31671  JI0408  676.80  677.05  0.25  100  Quartz vein 2 cm width 60° TCA. Py. AsPy. Cp?  80    0.7    15  38  6  2370  17  33 
35268  JI0408  BLANK  BLANK   BLANK BLANK BLANK SAMPLE                     
35272  JI0408  BLANK  BLANK    BLANK BLANK BLANK SAMPLE                     


Juanicipio Property  Drill Log Summaries and Assays for 2003-2004 Drill Programme  Appendix 4 

 

SAMPLE HOLE FROM  TO  INT.  Core Rec.  DESCRIPTION  Au  Au  Ag  Ag  Pb  Zn  Cu  As  Sb  Hg 
    (m)  (m)  (m)  (%)    (ppb) (check) (ppm) (check) (ppm)  (ppm)  (ppm) (ppm) (ppm)  (ppb)
35301  JI0409  74.23  74.53  0.30  100  Calcite and minor quartz breccia and scarce hematite, 70 to  11    0.7    18  48  59  147  15  600 
            core axis                     
35302  JI0409  77.67  77.87  0.20  100  Calcite-qz breccia incipient Py diss.  14    0.1    9  101  53  18  2  83 
35303  JI0409  83.40  83.87  0.37  100  Qz-calcite veinning zone in chloritized rock  11    0.1    10  40  70  9  2  247 
35278  JI0409  564.32  564.50  0.18  98  DUPLICATE SAMPLE  13    1.0    12  73  34  17  -1  51 
35304  JI0409  564.32  564.50  0.18  98  Quartz veinlet, 3 cm width, 70 to core axis, fine Py and black  19    0.1    9  76  32  26  3  38 
            minerals, gw hosted                     
35305  JI0409  569.62  569.75  0.13  91  Quartz + pale green color fluorite, 50 to core axis, fine Py.  30    2.0    11  59  34  65  4  34 
35306  JI0409  619.86  619.96  1.10  100  Calcite breccia, 3 cm width, 70 to core axis, fine Py  15    0.3    6  77  28  23  3  29 
35307  JI0409  622.89  623.01  0.12  100  Quartz veinlet, 2 cm width, 70 to core axis, fine black mineral  25    4.7    22  59  41  54  5  39 
            (acanthite?)                     
35308  JI0409  668.83  668.86  0.03  96  3 cm width calcite veinlet, 30 to core axis, fine Py  120    106.0    141  188  101  135  24  24 
35309  JI0409  672.28  672.45  0.17  100  Strong silicified breccia, Py traces  16    1.9    17  176  92  98  4  37 
35280  JI0409  672.45  672.70  0.25  100  DUPLICATE SAMPLE 35310  226    108.0    139  143  127  142  35  32 
35310  JI0409  672.45  672.70  0.25  100  Quartz veinlet, 30 to core axis, fine Cpy and acanthite?  20    2.3    22  122  167  201  9  80 
35311  JI0409  681.45  681.50  0.05  100  Quartz veinlet, 30 to core axis, abundant fine Py  11    1.2    21  56  108  126  7  30 
35312  JI0409  681.62  681.65  0.03  100  Quartz breccia, 3 cm width, Py and black sulphides hosted  23    2.7    25  155  177  140  8  33 
            strong silicified black shales                     
35313  JI0409  686.90  687.05  0.15  100  Quartz breccia, 50 and 30 to core axis, only fine Py  14    0.9    26  190  164  293  12  93 
35314  JI0409  687.90  688.05  0.15  98  Quartz veinlet, 1 cm width 70 to core axis, only fine Py  18    1.3    25  190  157  168  9  28 
35315  JI0409  688.90  689.07  0.17  96  Quartz veinlet 60 to core axis, abundant Py and fine black  10    1.8    16  70  46  26  3  32 
            sulphides                     
35316  JI0409  691.38  691.50  0.12  98  Quartz veinlet, with abundant fine Py  8    0.9    13  167  62  34  4  42 
35317  JI0409  707.25  707.45  0.20  100  Quartz veinlet, 3 cm. Width, 70 to core axis, fine Py  13    2.4    30  59  43  999  28  180 
35318  JI0409  708.05  708.32  0.27  100  Quartz veinlet , 20 cm width, 70 to core axis, fine Py  99    10.3    25  100  53  1825  102  2310 
35319  JI0409  716.85  717.05  0.20  95  Quartz breccia veinlet.  42    3.4    24  49  38  2795  91  97 
35320  JI0409  717.05  717.34  0.29  95  Quartz vein 50 to core axis, liston texture, abundant fine Py  49    3.5    22  95  56  1498  48  67 
            and strong argillic altereid midle shift                     
35321  JI0409  718.17  718.44  0.27  98  Quartz veinlets (3), 70 to core axis, scarce fine black  -5    0.4    14  79  26  87  1  27 
            minerals                     
35322  JI0409  718.44  718.70  0.26  100  Quartz veinlet, strongly silicified, cubic Py  18    1.5    28  63  40  59  3  34 
35323  JI0409  721.05  721.35  0.30  98  Quartz veinlet, 70 to core axis, fine Py  64    2.2    19  96  44  508  3  31 
35324  JI0409  723.30  723.33  0.03  100  Quartz veinlet, 1.5 cm width, fine Py and CPy traces  8    0.1    25  20  145  11  4  670 
35325  JI0409  724.95  725.22  0.27  100  Quartz veinlet, 70 to core axis, fine Py  -5    0.1    22  15  124  -2  3  620 
35279  JI0409  BLANK    BLANK  BLANK BLANK BLANK SAMPLE                     


 


































































 


Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

APPENDIX 5

Assay Certificates and Analytical Methods

From

BSI-Inspectorate Laboratories, Reno, Nevada

 

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Fire Assay/Precious Metal Analysis


HIGH GRADE ASSAYS/(Over 1%/10,000 ppm)

Element  Detection Limit   Price per sample 
Cu  0.1 %  $ 6.50 
Pb  0.1 %  $ 6.50 
Zn  0.1 %  $ 6.50 
Mo  0.1 %  $ 6.50 

Detection limits for various Fire assay methods and high-grade base metal analyses, taken from BSI-Inspectorate’s price brochure (FA method used by Mag-Silver circled in red).


MULTI-ELEMENT ATOMIC ABSORPTION PACKAGES

  PATHFINDER 7   
METHOD: Multi-Element Flame AA with Aqua-Regia Digestion  
  Hg by Cold Vapor AA     
 Parameter  Method  Detection Limit  
Ag  Silver  AA  0.1 ppm 
As  Arsenic  AA  2 ppm 
Sb  Antimony  AA  1 ppm 
Cu  Copper  AA  1 ppm 
Hg  Mercury  CVAA  0.01 ppm 
Pb  Lead  AA  1 ppm 

Zn 

Zinc  AA  1 ppm 

Pathfinder 7 package used by Mag-Silver for base metal and Ag analyses with detection limits taken from BSI-Inspectorate Price Brochure.












Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

APPENDIX 6

Site Visit

Sample Summary Descriptions, Assays, and Assay Certificates

and

Acme Analytical Laboratory

Assay Methods and Limits of Detection

Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006


Juanicipio Property  CCIC Site Check Assay Comparison with Mag-Silver Results  Appendix 6 

HOLE No. From  To  Int. Core Rec  DESCRIPTION  Sampler  Sample #  Au Ag Pb Zn Cu
(m)  (m)  (m)  (%)        (g/t)** (g/t)** (%)** (%)** (%)**
JI0301A 603.17  603.65  0.48  78  Quartz-calcite breccia 40° to core axis oriented,  MAG  169419  0.02 7.2 0.00 0.00 0.00
        fine pyrite,amethyst quartz and green fluorite.  CCIC  888  0.02 4 <.01 <.01 <.001
            % diff.  0% -44% 0% 0% 0%
JI0301A 603.65  604.14  0.49  78  Quartz vein sacaroidal texture fine cubic pyrite  MAG  169420  2.12 609.8 0.05 0.03 0.02
        very fine pyrargyrite christals,cpy traces,galena  CCIC  889  1.72 534 0.05 0.02 0.06
            % diff.  -19% -12% -4% -28% 185%
JI0301A 604.19  604.59  0.40  78  Quartz veinlet with sacaroidal texture fine piryte  MAG  169421  0.42 760.4 0.37 0.01 0.01
          CCIC  890  0.61 1045 0.30 0.01 0.02
            % diff.  46% 37% -18% 19% 126%
JI0301A 604.57  605.38  0.81  82  Quartz veinlets drussy texture zone, fine pyrite  MAG  169422  0.09 89.3 0.03 0.01 0.00
          CCIC  891  0.04 13 <.01 0.01 0.00
            % diff.  -56% -85% 0% 0% -5%
JI0305 803.12  804.27  1.15  100  Massive sulphides, 20° to core axis, Py, Sph, Gn,  MAG  169562  0.34 45.6 1.14 2.85 0.07
        Cpy traces, < pyrrotite  CCIC  892  1.19 51 0.62 1.95 0.08
            % diff.  247% 12% -46% -32% 3%
JI0305 804.27  805.37  1.10  100  Massive sulphides, 20° to core axis, Py, Sph, Gn,  MAG  169563  0.25 246.8 9.05 10.75 0.35
        Cpy traces, < pyrrotite  CCIC  893  0.3 218 5.30 11.27 0.33
            % diff.  22% -12% -41% 5% -7%
JI0305 805.37  806.90  1.53  99  Calcite branch, silicified, Py  MAG  169572  0.03 8.4 0.07 0.15 0.01
          CCIC  894  0.04 13 0.08 0.29 0.01
            % diff.  38% 55% 11% 96% 40%

* Au analyzed by standard fire assay
** Original Mag-Silver assays reported in ppb for Au, and in ppm for Ag, Cu, Pb and Zn.

Page 1 of 1

Caracle Creek International Consulting Inc.










Mag Silver Corp.
Independent Technical Report – Juanicipio, Mexico

APPENDIX 7

Exploration of Low Sulphidation Epithermal Vein Systems

Peter Megaw, 2006
Caracle Creek International Consulting Inc.
MAG06-JN
July 5th, 2006



Exploration of Low Sulfidation

Epithermal Vein Systems

by: Dr. Peter Megaw

Low Sulfidation Epithermal Vein Deposits (“LSEVD”) share many common characteristics whose recognition and interpretation allow explorationists to determine the magnitude of a given system and general location within the system, and thereby focus exploration. A brief review of some of these features is provided here leading to general exploration strategies to evaluate given systems. The reader is referred to Wisser (1966), Buchanan (1981), Hedenquist and others (1996), and Albinson and others (2001) for in-depth syntheses on LSEVD in general and especially in Mexico.

“Epithermal” literally means “shallow heat”, and is applied to hydrothermal systems emplaced at shallow depths (<1 km) in the earth’s crust. “Low Sulfidation” refers to a style of epithermal system developed in a geothermal or hot springs environment versus “High Sulfidation” epithermal systems which develop in the volcanic hydrothermal environment. There can be significant overlap between these two end-members.

Gold and silver mineralization in LSEVD systems occurs dominantly as veins and stockworks with minor disseminations. Major examples include: Pachuca, Guanajuato, Tayoltita, El Oro and Fresnillo, Mexico; Hishikari, Japan; and Comstock, and Tonopah, USA. Associated elements include Cu, Ag, Zn, Pb, and As.

Distinctive minerals present in LSEVD include: pyrite, sphalerite, galena, arsenopyrite and sulfosalts (complex Ag, Pb and Cu species with As and Sb as well as sulfur). Gangue minerals are dominated by quartz, adularia (hydrothermal Potassium feldspar) and calcite with some illite development (Hedenquist and others, 1996). Fluids in this regime generally do not significantly alter surrounding wall rocks at the depth of mineralization, but do effect increasingly widespread silicification, Advanced Argillic Alteration (including kaolinite, alunite and/or buddingtonite) and propyllitic alteration (chlorite, calcite, epi-dote and/or pyrite) above the mineralized levels.

Ore metals and gangue ingredients are dissolved in the epithermal ore fluids, which rise from depth along structural pathways at high temperatures (>200 oC) under enough pressure to preclude boiling. Mineralization occurs when the pressure drops abruptly (through faulting or other rupture), which instantly triggers boiling (“flashing”) and causes the ore fluids to “dump” their mineral load into any available open space. Metals bearing species are deposited first (and very quickly) followed by quartz, calcite and adularia gangue which grow more gradually until all open spaces are filled. When the system is again sealed, pressure begins building again until the next rupturing event occurs and the mineralizing process recurs. This vigorous episodic process rips up vein fillings deposited in previous stages and covers them with new fillings and gives epithermal veins their characteristic repeated banding and breccia textures. Generally, long-lived epithermal vein systems display more repetitions and larger metals budgets than short-lived systems.

Structures are the most fundamental control on location of vein development: from providing major ore fluid ingress channels to the open spaces for ore deposition. Productive LSEVD districts typically show a “grain” reflecting opening (and reopening) of a series of roughly parallel and/or intersecting structures on a range of scales and can often be related to position within the stress fields of major regional structures. Some of these major regional structures contain numerous separate but roughly contemporaneous districts/mineralization centers along hundreds of kilometers of their length. This suggests the existence of regionally extensive ore-producing processes whose products move into shallow crustal levels in response to regional structural events.


Epithermal Vein Systems continued...

On a district and individual vein scale, the local structural regime controls which portions of which structures are opened by rupturing, and subsequently filled by mineralization. Ore shoots typically develop within “dilatent” zones developed along inflections of vein strike or dip where geometry permits maximum opening at the time of mineralization. Repetitions of these inflections along kilometers of a given structure are often each occupied by ore shoots, giving a “beads on a string” distribution to the best orebodies in these veins. In a vertical sense, many vein structures show a gradual splitting or “horsetailing” towards the surface. This reflects the shallow seated structural environment of vein fields in general and the tendency for vein openings to be best developed in areas of local extension.

The metals component of the vein filling is zoned with respect to the boiling level (Fig. 1): base metals (Pb, Zn, Cu) tend to be deposited below it, while silver and gold are dominantly deposited above the boiling level. Boiling may occur at different elevations for different mineralizing episodes (in response to the degree of pressure buildup before rupture), so a broad transition zone often exists between the precious metals rich upper part of the vein and the more base metal rich root zone. In the most extreme cases the boiling level may change abruptly by hundreds of meters during the life of the hydrothermal system (Simmons, 1991). This can result in temporally separate stages of precious metal and root zone mineralization occurring side by side in “composite veins”, or repetitions of the complete zoning separated by 100 meters of barren in “stacked” veins. 


Alteration is also zoned with respect to the boiling level and the paleosurface. Overall, the combined alteration zones tend to spread out laterally and upwards (See Figure 1), reflecting a combination of the near surface horse-tailing of the structural framework and progressive fluid migration away from the principal fluid conduits. The overall lateral progression is from silicifica-tion to propyllitic alteration (chlorite, epidote, calcite and pyrite), whereas the vertical progression is from silicification to Advanced Argillic Alteration to siliceous residue. Wallrock composition and permeability strongly affect lateral alteration development: more reactive and permeable units will show the most pervasive alteration. Intermediate volcanic and intrusive rocks (andesites and diorites), and sediments derived from these (arkoses) are especially susceptible to propyllitic alteration, so this alteration is commonly well developed in epithermal vein systems deposited in subduction related magmatic belts (c.f. most of the Western Cordillera of the Americas). Shales and fine-grained siliclastic rocks, typical of the continental side of the Cordillera are generally less reactive and permeable, and alteration halos around veins hosted in these rocks are typically much more limited. Limestones and other calcareous rocks are highly reactive and may trigger replacement reactions, creating skarns or sulfide replacements, where LSEVD fluids cut these rocks.

Near-surface alteration reflects the chemistry of the residual depleted ore fluids. These approach the acidic chemistry of high-sulfidation systems and generate many of the same Advanced Argillic Alteration minerals (kaolinite, alunite and buddingtonite). The classic “vuggy silica” residual textures of the high sulfidation systems are rare in low sulfidation systems, but a cap of fine-grained silica deposited on the surface (sinter) or just below it is common. This surficial silicification is readily distinguished from the deeper silicification zone by much finer (often colloidal or opaline) textures and the common presence of cinnabar (mercury sulfide) and very fine-grained pyrite.

The productive zones of most known vein districts have been discovered in outcrop, so little remains of the uppermost alteration zones in many major districts. Stripping off of this protective


Epithermal Vein Systems continued...

cover exposed the precious metal zones to surficial weathering processes, some of which destroy sulfide species, liberating the metals and allowing their downward transport and reprecipitation at depth. This can result in essentially barren vein outcrops overlying shallowly buried zones of high-grade secondary enrichment. Many of these provided Bonanza grade ores to the earliest discoverers. Exploration of LSEVD involves comparing geologic observations made in the field (surface, mine and core) into an integrated district perspective with respect to the factors above to determine a given area’s favorability for discovery.

First order favorability considerations include:

1.      How favorably is the system located?…does it occur within a regional belt of related deposits?
 
2.      Depth of exposure…is the precious metals zone preserved and/or inferred to lie at what depth? Has the base metal root zone been reached?
 
3.      What was the strength/longevity of the system…how extensive is it and how many repetitions are reflected in the vein textures?
 

Second order favorability features include:

1.      Degree of alteration development and ability to relate it to mineralization centers or controls:
 
2.      Exposure of the regional structural fabric and ability to decipher stress regime.
 
3.      Do possible stacked or composite vein targets exist?
 
4.      Are parallel or intersecting structures possible?
 
5.      Are logically “missing” parts of the system hidden by younger cover in adjacent areas?
 

REFERENCES

Albinson,-F., T., Norman, D.I., Cole, D., and Chomiak, B., 2001, Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. In, Albinson-F., T. and Nelson, C.E. eds.New Mines and Discoveries in Mex-ico and Central America Society of Economic Geologists, Special Publication No. 8., Little-ton CO, p. 1-32.

Buchanan, L.J., 1981. Precious Metals Deposits Associated with Volcanic Environments in the Southwest: in, Dickinson, W.R., and Payne, W.D., eds., Arizona Geological Society Digest Vol. 14., p. 237-262.

Hedenquist, J.W., Izawa, E., Arribas, A., and White, N.C., 1996, Epithermal Gold Deposits: Styles characteristics and exploration: Society of Resource Geology, Resource Geology Special Publication Number 1, Tokyo, Japan, 24p.

Simmons, S.F., 1991, Hydrologic implications of alteration and fluid inclusion studies in the Fresnillo District, Mexico; evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn ore-bodies.: Economic Geology, v. 86, no. 8, p.

1579-1601.

Wisser, E.D., 1966, The Epithermal Precious Metal Province of Northwest Mexico: Ne-vada Bur. Mines Rept. 13, pt. C, p. 63-92.

Dr. Megaw has a Ph.D. in geology and more than 20 years of relevant experience focussed on silver and gold mineralization, and exploration and drilling in Mexico. He is a certified Professional Geologist (CPG 10227) by the American Institute of Professional Geologists and an Arizona Registered geologist (ARG 21613). His primary exploration foci are CRDs, Vein Deposits and Porphyry Copper Deposits. He specializes in property evaluation and acquisition for clients through collaboration with his associates in Minera Cascabel.