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ANNEX 1 
ISDA-LIBA-TBMA 

COUNTERPARTY RISK MARKET SURVEY 2003 
 

 
A- INTRODUCTION AND BACKGROUND 
 
ISDA initiated a dialogue with the Models Task Force on a possible review of the 
counterparty risk treatment of OTC derivative transactions in 2001. The Capital 
Accord reform seemed the perfect opportunity to undertake this review, and ISDA 
presented concrete proposals to this end in its commentary on CP2, published in May 
2001. The Models Task Force unfortunately chose to carve out derivatives 
counterparty risk from the scope of the New Accord, a decision contrasting with the 
steps simultaneously taken by the Capital Group to amend the counterparty risk 
treatment of repurchase agreements and stock lending. Although the industry 
welcomes the recognition of portfolio VaR modelling for repo-style transactions, the 
Associations are concerned that the current divergence of treatment between 
derivatives and repos may preclude the “regulatory” netting of future exposure 
between these products, despite the many common economic features between them 
(repos can be represented as forwards). At worst, industry endeavours to achieve a 
higher degree of cross product netting may be frustrated at source. 
 
We remain hopeful however, that the Models Task Force and the Capital Group will 
jointly review the capital treatment of repos and OTC derivatives very shortly after 
the publication of the New Accord, with a view to implementing any necessary 
changes at the same time as the Accord.  
 
In a spirit of co-operation, ISDA, TBMA and LIBA have designed a survey aimed at 
providing the Models Task Force with further information on (i) the modelling of 
future exposure arising from OTC derivative and securities financing transactions by 
member firms –Question One- ; (ii) collateral management practices for OTC 
derivatives – Question Two- ; (iii) the reasonableness of the weak independence 
assumption underpinning the May 2001 ISDA proposal on counterparty risk –
Question Three-. 
 
The contents of this survey were discussed with a subset of the Models Task Force 
before the survey itself was published.  
 
We are reporting below on the survey findings, with a view to providing as detailed 
information as possible.  
 
For confidentiality reasons it has not been possible to append a list of respondents, but 
some useful information on the type of firm and principal place of business of 
respondents is included immediately below.    
 
B- SURVEY RESPONDENTS  
 
Fifteen firms responded to the survey including three investment firms, and twelve 
internationally active banks. Most of these firms are major players in the securities 
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financing and OTC derivatives markets. A geographical breakdown is provided in 
Table 1 below. 
 
Table 1 
 

ost firms (14 out of 15) responded to Question One. The response rate was 

Table 2

Breakdown by region of survey respondents

 Europe North Asia
America

Geography 47% 40% 13%
 [%]

Geography 7 6 2
 [number]

M
comparable for Question Two. However, only 40% of firms were able to produce the 
graphs requested in Question Three. Of the remaining 60%, most quoted technical 
hindrances and cost as primary motivations for not contributing.  
 
   

he survey consisted of three questions. Question One focused on the measures of 
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C- SURVEY FINDINGS  

stion One

lobally Europe North Am. Asia

pleted 93% 47% 40% 7%

stion Two

lobally Europe North Am. Asia

pleted 87% 47% 33% 7%

stion Three

lobally Europe North Am. Asia

pleted 40% 20% 13% 7%

94% 

f the Survey Completed

 
T
future exposure used by firms to set credit limits and allocate capital internally, 
distinguishing between OTC derivatives and securities financing. Question Two 
aimed to provide a broad description of industry practices in the field of OTC 
derivatives collateral management. Question Three was designed to measure how well 
the weak independence assumption underpinning ISDA’s response to CP2 was 
supported by firms’ own exposure correlation data.  
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Question One  
he measures of counterparty credit exposure (e.g. : expected exposure, 

irms were asked to describe the measures of future exposure (FE) they use for 

1- Strong consistency exists among respondents on the approach to setting 

he exposure profile is measured on a full time to maturity basis for unsecured trades. 

2- For allocating economic capital, industry practice increasingly 

or securities financing transactions, only four firms filled in the questionnaire. ¾  use 

oing forward, respondents aspire to achieving a higher degree of netting. Legal 

 -Firms generally apply the same exposure modelling methodology for setting 
cre

near term future.  

“Please detail t
PFE, EPE) your firm uses for the specified purposes, distinguishing between 
collateralised and uncollateralised exposures.”  
 
F
managing counterparty risk in OTC derivatives and securities financing portfolios, as 
well as the methodology employed to obtain these measures. A distinction was drawn 
between FE measures used (i) for setting credit limits and (ii) for calculating 
counterparty risk economic capital. 14 out of the 15 firms included in the survey 
responded, showing uniformity of practice: 
 
 
counterparty risk limits in portfolios of OTC derivatives and securities financing 
transactions. The measure of exposure used in both cases is generally peak 
exposure, evaluated at a percentile comprised between 90% and 99%.  
 
T
The time horizon employed for collateralised positions generally reflects any 
applicable margining agreement. Where daily margining applies, the liquidation 
period retained varies between 1 and 15 days, and is shorter for securities financing 
(typically between 1 and 5 days) than for collateralised derivative trades (generally 
approximately 10 days). 
 
 
converges towards an EPE based standard. In OTC derivative portfolios, 9/15 of 
respondents use Expected Positive Exposure (EPE) or loan equivalent exposure for 
measuring FE. The latter metric is generally presented as conceptually consistent with 
EPE, albeit more conservative : some firms set it equal to EPE plus an upward 
adjustment capturing counterparty credit quality and/or concentration risk. 3/15 of 
respondents use peak exposure.  
 
F
adjusted EPE as a basis for calculating counterparty risk capital.  
 
G
agreements allowing cross product netting, such as the Cross Product Master 
Agreement [CPMA], promoted by TBMA and ISDA, or the ISDA Agreement Bridge, 
were designed to enable this further level of offsetting. Beyond the netting of current 
market values, firms are increasingly focusing on the netting of future exposure. This 
ideally requires to use a common measure of future exposure across the array of 
products embedded under cross product netting agreements. In the light of 
counterparty risk market practice, it would be sensible to base this common measure 
upon EPE.  

 
3
dit limits and for calculating economic capital. Monte Carlo simulation is the 

approach of choice for portfolios of OTC derivatives. Where it is not, or only 
partially used, firms often mention their intention to move to full Monte Carlo in the 
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Less elaborate modelling is employed for securities financing, including historical 
sim lation, variance-covariance and MTM+add-ons.  

 occurs generally reflects the 
sophistication of modelling. Most firms using an add-on based measure do not, or 

sponses is provided in the tables below. 

u
 

The level at which aggregation of future exposure

only partly, net FE at counterparty level. By contrast, all firms using Monte Carlo 
simulation do so. 
 
The detail of the re
 
Table 3 
 

OTC derivatives  of future exposure used for setting counterparty risk limits- Measures

 
 

Firm Measure of exposure used How is exposure profile produced How are transactions aggregated Time horizon

1 97.5% peak exposure Monte Carlo simulation At counterparty level (*) Time to maturity
2     
 95% peak exposure MTM + internal add-on Counterparty level Time to maturity
  
   
3 97.5% peak exposure Monte Carlo simulation Counterparty level  Time to maturity for uncollateralised
 10 days for collateralised
4 98% peak exposure Variance Covariance Counterparty level Time to maturity for uncollateralised
  
5 95% peak exposure Monte Carlo simulation Counterparty level Time to maturity for uncollateralised
 Limit schedule is imposed 10 days for collateralised
 on PFE profile. Lower limits

are imposed on longer term
exposures.

6 Peak exposure MTM + add-on Counterparty level. Time to maturity
 Monte Carlo to be used in future

7 97.5% peak exposure Monte Carlo simulation Counterparty level Time to maturity
8 99% peak exposure Analytical approximation to Monte Carlo Counterparty level Time to maturity

simulation
9 95% peak exposure Revaluing in three scenario, 2 extre- Counterparty level Time to maturity for uncollateralised

me, one intermediate Netting of trades at risk factor level 15 days for collateralised
10 97.7% peak exposure Mainly Monte Carlo simulation Counterparty level Time to maturity for all transactions

For exposures not covered by Monte No netting of add-ons for counterparties
Carlo, MTM+add-on falling outside the scope of Monte Carlo

simulation
11 95% peak exposure Monte Carlo simulation for large Counterparty level. A discount is applied to Time to maturity

customers, otherwise MTM + add-on the sum of add-ons to reflect netting
For some trade, a constant future
exposure is used

12 Peak exposure Monte Carlo simulation Counterparty level Time to maturity
90%

13 Peak exposure Delta-gamma approximation with Counterparty level For unsecured, time to maturity
95% variance covariance For collateralised,  liquidation period for

Full Monte Carlo for more exotic products daily margining
14 Risk equivalent exposure Monte Carlo simulation [both derivative Counterparty level 10 day interval at each point in time in the 

 (EPE based) exposure and counterparty credit risk] simulation
15     

  
(*) Counterparty level means that netting is applied within netting groups, according to available documentation. Positive exposures are generally summed across netting
groups at counterparty level.
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Table 4 

OTC derivatives - Measures of future exposure used for allocating capital internally for counterparty risk

 

Firm Measure of exposure used How is exposure profile produced How are transactions aggregated Time horizon

1 Expected credit exposure Monte Carlo simulation At counterparty level Time to maturity
2 Uncollateralised : MTM+add-on MTM + add-on Counterparty level  Uncollateralised : time to maturity
 Collateralised : 95% peak Collateralised : variance covariance  Collateralised : 10 days
  
 In future : Monte Carlo  
3 No internal economic capital allocation    
  
4 98% peak exposure Variance Covariance Counterparty level 1 year for uncollateralised
   
5 Loan equivalent exposures Monte Carlo simulation Counterparty level Time to maturity for uncollateralised
 Currently building model allowing for 10 days for collateralised
 cross risk factor diversification

 
 

6 Loan equivalent exposure MTM + add-on By transaction type Time to maturity
Monte Carlo to be used in future

7 Loan equivalent exposure Monte Carlo simulation Counterparty level Time to maturity
8 Loan equivalent exposure Analytical approximation to Monte Carlo Counterparty level Both 1 year and time to maturity

simulation
9 Currently no economic capital calculation Same scenarii used as for setting credit Trades with one counterparty are 1 year for uncollateralised

is performed. EPE was used in the past risk limits partitioned by risk factor. Summation is 15 days for collateralised
used across risk factors

10 Peak of expected exposure profile Mainly Monte Carlo simulation Counterparty level Peak expected exposure calculated on 
For exposures not covered by Monte No netting of add-ons for counterparties time to maturity basis, then used in a
Carlo, MTM+add-on falling outside the scope of Monte Carlo capital model of horizon equal to 1 year

simulation
11 EPE Monte Carlo simulation for large Counterparty level. A discount is applied to 1 year

customers, otherwise MTM + add-on the sum of add-ons to reflect netting
Add-on conservatively set at 95% worst
case

12 EPE, with upward adjustment reflecting Monte Carlo simulation Counterparty level 1 year  
wrong way risk, counterparty rating
and concentration risk

13 EPE, with adjustment reflecting Delta-gamma approximation for simple Counterparty level 1 year
concentration risk products, full Monte Carlo for exotic products. (less where margining applies)

14 Risk equivalent exposure Monte Carlo simulation [both derivative Counterparty level 10 day interval at each point in time in the 
 (EPE based) exposure and counterparty credit risk] simulation

15     
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Table 5 
 

Repos - Measures of future exposure used for allocating internal economic capital

Firm Measure of exposure used How is exposure profile produced How are transactions aggregated Time horizon

1

2 Current value MTM Counterparty level NA
 
 
 In future : Monte Carlo
3
 
4
 
5
 
 

6

7
8 Loan Equivalent exposure Analytical approximation to Monte Carlo simulation Counterparty level Both 1 year and time to maturity
9

10

11

12 EPE with adjustment Monte Carlo simulation Counterparty level Min (1 year, maturity)

13 EPE, with adjustment reflecting Historical simulation Counterparty level 1 year
concentration risk  (less where margining applies)

14

15
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Table 6 
 
 

Repos - Measures of future exposure used for setting counterparty risk limits

Firm Measure of exposure used How is exposure profile produced How are transactions aggregated Time horizon

1 Peak exposure Model based on maximum daily changes At counterparty level 1 day
 in risk factors

2 Peak exposure MTM + add-on ( based on actual market Counterparty level 3 days
  volatilities)   
  
   
3 Peak exposure Variance Covariance Counterparty level  10 days  
 97.50% Moving to historical simulation  
4 98% peak exposure Variance Covariance Transaction level 3 days for suitably documented trades
 Otherwise time to maturity
5 Peak exposure MTM+ add-on Transaction level Between 3 and 10 days
  Moving to full fledged VaR models  
  

 
 

6 Peak exposure MTM + add-on Transaction level Time to maturity
  

7 97.5% peak exposure Monte Carlo simulation Counterparty level Time to maturity
8 99% peak exposure Analytical approximation to Monte Carlo Counterparty level Time to maturity

simulation
9 95% peak exposure Revaluing transaction assuming 95th Counterparty level 5 days

worst case move in underlying govt Individual transactions are aggregated  
yield curve + spread curve allowing for consistency in yield/spread moves

10 97.7% peak exposure Counterparty level Time to maturity for all transactions
  
  

 
11 95% peak exposure MTM + add-on Counterparty level. A discount is applied to Time to maturity

 the sum of add-ons to reflect netting
 
 

12 Peak exposure Repo : Variance covariance Counterparty level Time to maturity
97.50% Others : MTM + add-on

13 Peak exposure Historical simulation Counterparty level Time to maturity, down to liquidation period
95% if daily margining applies

14 99% peak exposure Monte Carlo simulation [both derivative Counterparty level 10 day interval at each point in time in the 
 exposure and counterparty credit risk] simulation

15     
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Question Two:  
Question Two aimed to gather information on firms’ collateral management practices 
in OTC derivatives portfolios.  
 
13 out of 15 firms responded.  
 
Question 2.1 : Percentage of derivatives portfolio collateralised  
 
Respondents indicated that between a third and two thirds of their transactions had 
collateral attached to them 1. The percentage of total exposure collateralised was fairly 
stable across firms, at around 33%. These results are consistent with the 2002 ISDA 
Margin Survey (available on www.isda.org, see section 4.4. on page 12). The Margin 
Survey further analyses collateralisation practice by type of derivative, and shows that 
collateral taking is more developed on fixed income and FX derivatives at large firms.  
 
Use of collateral is constantly growing : respondents to the 2002 Margin Survey 
report over 28,000 collateral agreements in place, compared with 16,000 in the 2001 
Survey and 11,000 in the 2000 Survey.  This trend is unlikely to abate, in view of the 
increasing number of corporate downgrades, and the recognition of a wider range of 
collateral under the New Capital Accord. 
 
Only two respondents attempted to measure the impact of collateral use on their 
firm’s economic capital. They respectively estimated their capital savings at 6.4% and 
around 25%. 
 

                                                 
1 What is measured here is the number of collateralised transactions divided by the total number of 
transactions.  
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Question 2.2 : Types of collateral used    
 
Responses received appear in the table below.  
 
 Table 7  

Firm 
No. Cash AAA gov't debt

Exposures to 
other 

investment 
grade 

counterparites

Exposures to 
non-

investment 
grade 

counterparties

1 100% 0% 0% 0%

2 70% 25% 4% 1%

3 70% 30% 0% 0%

4 82.30% 15.50% 2.20% 0%

5 0% 0%

6 90% 10% 0% 0%

7 67% 21% 12% 0%

8 59% 15% 18% 8%

9 75% 17% 5% 3%

10

11 64% 36% 0% 0%

12 17.60% 1.00% 1.40% 0%

13 N/A N/A N/A N/A

14 N/A N/A N/A N/A

15 N/A N/A N/A N/A

Types of collateral used

cash principally

great majority

 
 
US dollar and Euro cash remain the most commonly used collateral assets, followed 
by government securities. 6 out of 12 respondents accept investment grade corporate 
bonds as collateral, whilst only 3 firms accept non investment grade bonds. These 
results again echo the 2002 ISDA Margin Survey : among the large firms, the 
percentage of those accepting and delivering corporate bonds as collateral has nearly 
doubled from 2001, jumping from 25% to 46% (see section 3.2., page 8). 
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Question 2.3 : Frequency of margining 
 
Margining occurs daily with the vast majority of counterparties, as evident from table 
8 below.  
 
Table 8  
 

uestion 2.4 al thresholds and minimum transfer amounts (MTAs)

3 out of 15 s commented on this question.  
t to the next, reflecting diversity of 

ounts are 

- ng on firms, between 25% and 50% of collateral agreements include 

- 100%) of collateral agreements 

average EUR/US$ 100,000. 

Q  Collater  
 

firm

Firm no. Daily Weekly Monthly Other

1 100% 0% 0% 0%

2 76% 14% 8% 2%

3 100% 0% 0% 0%

4 76.2% 16% 0% 7.8%

5 Majority 0% 0% 0%

6 Banks 0% Corporates 0%

7 89.8% 3.7% 5.5% 1%

8 0% Majority 0% 0%

9 87% 0% 13% 0%

10 N/A N/A N/A N/A

11 82.2% 8.6% 7.2% 2%

12 59% 17% 17% 7%

13 89% 3% 6% 2%

14 N/A N/A N/A N/A

15 N/A N/A N/A N/A

How often is margining applied?

1
Practice varies substantially from one responden
internal policy. A number of salient features are however worth reporting:  

- For all respondents, collateral thresholds and minimum transfer am
set with regard to the credit quality of the counterparty. 7 respondents 
explicitly link threshold amounts to the external rating attributed to the 
counterparty. These firms also tend to vary minimum transfer amounts by 
rating.  
Dependi
thresholds, the majority of which (between 50% and 60%) are set below 
EUR/US$ 10MM. Thresholds of above EUR/US$ 50MM represent less than 
10% of the total and are typically reflective of the very high (AAA/AA rating 
equivalent) credit quality of the counterparty.  
A high percentage (typically between 75% and 
include minimum transfer amounts. MTAs for high quality counterparties tend 
to exceed EUR/US$ 500,000, whereas for low quality counterparties, they 
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Question Three  
Firms were asked to graph the distribution of pair-wise correlation and covariances 

eir OTC derivative and repo portfolios.  

endence between pairs of 
ounterparties in firms’ OTC derivatives and repo portfolios. Correlations or 

e sample analysed both OTC 
erivatives and securities financing portfolios. The others focused purely on 

confirm the existence of clustering around zero for both securities 
nancing and OTC derivatives counterparties, at all firms but one. The exception 

ns used by respondents, are reproduced 
elow.  

IRM SEVEN

of exposures in th
 
The intended purpose was to measure the degree of dep
c
covariances clustering around zero for a substantial percentage of counterparties are 
an indicator of weak independence. For background, weak independence is the main 
assumption behind ISDA’s original recommendation to the Basel Committee in 
favour of Expected Positive Exposure2. In portfolios where weak independence is not 
found, EPE is too lenient a measure of future exposure.  
 
Six firms were able to produce the graphs. Only two in th
d
derivatives.  
 
The graphs 
fi
seems, contrary to other contributors, to be an end-user of derivatives rather than a 
dealer. This would result in over-sensitivity to a very small number of market risk 
factors and the predominance of one-way exposures in their portfolio, resulting in 
clustering around correlations of –1 and +1.  
 
The graphs, and where available, assumptio
b
 
 
F  
 
Assumptions: 
Correlation between counterparty exposures is estimated using exposures simulated at 

nt in the Monte Carlo simulation.   

  
on is estimated at one future point in the Monte Carlo simulation, i.e., the 

flected in the exposures.   

                                                

the one-year poi
The exposures reflect the impact of netting and collateral.   
Key points: 
• Correlation is estimated between counterparty exposures
• Correlati

one-year point. 
• Collateralized and uncollateralized counterparties are not separated.  The impact 

of collateral is re

 
2 See ISDA’s response to CP2, Annex 1, published May 2001 
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FIRM ELEVEN 
 
The analysis is based on the fixed income derivatives outstanding with the 50 largest 
customers.  Modelling proceeds as follows: 
 
1. Generating 10,000 market rate scenarios starting today to 1 month in the 

future (only changes in interest and FX-rates were taken into account; 
volatilities and correlations were estimated using 4 years of historical data) 

 
2. Calculating today's exposure (MTM value of portfolio) taking account of 

netting contracts. Collateralisation was ignored.  This exposure number is 
fixed (non-stochastic) for each customer.  

 
3. Calculating tomorrow's exposures and exposures in 1 month from today for 

each customer in each market scenario. 
 
4. Calculating the change in exposure between today and tomorrow (as input for 

1-day correlation) and the change in exposure between today and 1 month in 
the future (as input for 1-month correlation), for each customer and in each 
market scenario. 

 
5. Calculating for each pair of customers the 1-day and the 1-month correlation 

based on the change in exposure over 1 day or 1 month. In this analysis, the 
changes in exposures for different customers are compared and based on the 
same market scenario.  

 
Please find below the histograms obtained following this analysis. The difference 
between the histogram of 1-day and 1-month correlations is limited. The distribution 
of both correlations is quite close to a uniform distribution, which supports the weak 
independence assumption.  
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FIRM ELEVEN 
 
 

Distribution correlations between customers
based on changes in exposure in 1 day for top 50 OTC-customers

average: 3.2% and standard deviation: 42.6%
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FIRM ELEVEN 
 

Distribution correlations between customers
based on changes in exposure in 1 month for top 50 OTC-customers

average: 3.8% and standard deviation: 45.3% 
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 FIRM TWELVE 
 
Our internal exposure simulation engine generates exposure distributions at each of 
150 future time points per counterparty. The distribution at each of these time points 
consists of 1000 values. FX and IR moves for all major currencies / currency pairs are 
simulated to obtain these exposures (with netting agreements and collateral taken into 
account).   
 
We obtained the correlation and covariance results for the non-repo OTC portfolio 
study using the simulation engine mentioned above. For the repo study we used the 
delta approach proposed by ISDA.  
 
Due to the amount of processing time involved we concentrated on two hundred 
counterparties (representing the 'biggest risks' as measured by portfolio risk 
contribution) for the non-repo portfolio study. The figures and tables below 
summarise the results at the one year horizon. The data shown includes aggregated 
collateralised and uncollateralised OTC derivatives: we were not able to provide a 
finer breakdown.  
 
The data indicates that the non-repo portfolio has an average correlation across the 
portfolio of  7.19%. We point out that this figure is the average across the top two 
hundred risk contributors (not the whole portfolio or 200 randomly selected 
counterparties). 
 
The repo results provided are for the entire repo portfolio, not a subset. 
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FIRM TWELVE 
 
Frequency Distribution of OTC counterparty correlations 
 

 Correlation Distribution: OTC derivatives
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FIRM TWELVE 
 
 
Frequency distribution for OTC covariances 
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FIRM TWELVE 
 
 
Securities Financing 
Probability density of correlations 
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The symmetry in this graph appears to reflect the fact that risk is analysed using only 
the deltas. 
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FIRM TWELVE 
 
 
Probability density of covariances 

Note that the vertical scale is logarithmic. 
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About 2% (1% on each side) of the data points lie outside the range ±1017€2 and hence 
are missing from the graph. The covariances incidentally follow very closely a 
Student t distribution with 0.3d.f. 
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FIRM THIRTEEN 
 
 
 

Covariance chart- OTC derivatives 

 

Distribution of covariances between counterparties
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FIRM THIRTEEN 
 
Correlation chart – OTC derivatives 

Distribution of correlations between counterparties
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FIRM FOURTEEN 
 
 

Correlations of Repo Exposure Across 200 Largest Counterparties
(Two-week time horizon, no new collateral)
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FIRM FOURTEEN 
 
 

Correlations of Swap Exposure Across 200 Largest Counterparties
(One-year time horizon, new collateral collected)
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FIRM FOURTEEN 
 

Correlations of Swap Exposure Across 200 Largest Counterparties 
(Two-week time horizon, no new collateral)
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APPENDIX: COUNTERPARTY RISK MARKET PRACTICE SURVEY 
 

ISDA 
International Swaps and Derivatives 
 Association, Inc. 
One New Change  
London, EC4M 9QQ  
Telephone:  44 (20) 7330 3550 
Facsimile: 44 (20) 7330 3555 
email: isda@isda-eur.org 

website: www.isda.org 

LIBA 
LONDON INVESTMENT BANKING 
ASSOCIATION 
6  F rede r i ck ' s  P lace  
London ,  EC2R 8BT 
Tel :  020 7796 3606    
Fax:  020 7796 4345 
e-mail: liba@liba.org.uk     
website: www.liba.org.uk 

 
THE BOND MARKET ASSOCIATION
40 Broad Street 
New York, NY  10004-2373 
Tel.:  212.440.9400 
Fax:   212.440.5260 
website:  www.bondmarkets.com  

 
            25 February 2002 
 
Counterparty risk market survey 
 
 
Dear All,  
 
The Models Task Force has informed ISDA that, in view of the Basel Committee’s 
revised timetable, they will not include a review of counterparty risk for OTC 
derivatives in CP3.  They are willing, however, to revisit the subject as soon as the 
New Capital Accord has been finalised; this is likely to happen in late 2003.  Provided 
we act in a timely manner, changes in the capital treatment of counterparty risk that 
are developed after publication of the Accord could be implemented at the same time 
as the Accord itself.  
 
With regard to the content of the survey itself, the MTF has requested a more targeted 
and detailed view of the proposed measures of counterparty risk than we originally 
suggested.  We have consequently revised the survey and designed the questions to 
provide information regarding the following regulatory concerns: 
 
Expected exposure - The MTF has objected to the adoption of expected exposure on 
the grounds that it is not a commonly used measure.  ISDA has responded that firms 
use different measures for different purposes, that expected exposure is the 
appropriate measure for economic capital allocation, and that some firms have 
adopted more sophisticated measures that are consistent with expected exposure. 
 
Secured financings - ISDA has argued that issues applying to OTC derivatives also 
apply to secured financing and that the approach taken to measuring future exposure 
should be consistent for both. 
 
Margin practices – The MTF has requested information regarding the convergence of 
derivatives collateral management practices with securities financing management 
practices. 
 
Weak independence - The MTF has questioned the reasonableness of the weak 
independence assumption, which underpins use of expected positive exposure. 
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Attached is the final version of the survey form.  Please send your completed survey 
form to Emmanuelle Sebton (esebton@isda-eur.org) by 31 May 2002.  Should 
you require additional information, please do not hesitate to contact Emmanuelle in 
London, or David Mengle in New York (dmengle@isda.org). 
 
Yours sincerely, 
 
Emmanuelle Sebton   David Mengle   Katharine Seal 
ISDA     ISDA    LIBA 
Head of Risk Management  Head of Research  Director 
 
Omer Oztan 
The Bond Market Association 
Vice President and Assistant General Counsel 
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Counterparty Risk Market Survey   
ISDA, LIBA and TBMA members are kindly requested to provide the following 
information regarding their counterparty risk management practices by 31 May 2002. 
 
Question 1:  Measures of counterparty credit exposure 
Please detail the measures of counterparty credit exposure (e.g., expected exposure, PFE, 
EPE) your firm uses for the specified purposes.  Please distinguish between treatment of 
collateralized and uncollateralized exposures. 
 
A.  OTC derivatives 
      1.  Setting counterparty risk limits 
          a. What measure do you use? 
 
          b. How do you approximate the exposure profile? 
 
 
          c. How do you aggregate exposures (by transaction or on portfolio basis)? 
 
 
          d. What time horizon do you use for estimation of the exposure profile? 
 
 
     2.  Economic capital calculation   
         a. What measure do you use? 
 
         b. How do you approximate the exposure profile? 
 
 
         c. How do you aggregate exposures (by transaction or on portfolio basis)? 
 
 
        d. What time horizon do you use for estimation of the exposure profile? 
 
 
Other uses:  Please detail in Remarks section on following page. 
 
B.  Securities financing (includes both repurchase agreements and securities lending) 
         a. What measure do you use? 
 
         b. How do you approximate the exposure profile? 
 
 
         c. How do you aggregate exposures (by transaction or on portfolio basis)? 
 
 
        d. What time horizon do you use for estimation of the exposure profile? 
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Question 1 (continued):  Measures of counterparty credit exposure   
Remarks:  (Please specify additional detail, including other uses of counterparty 
exposure measures used, which might be useful to supplement the above 
information.) 
 
Question 2:  Collateralisation practice.   
Please specify: 
 
1. What percentage of your OTC derivatives portfolio is collateralised 
 
 
2. Types of collateral used 
 

 
Collateral type 

Percent of exposures 
covered 

Cash  
AAA government debt  
Exposures to other investment grade counterparties  
Exposures to non-investment grade counterparties  

 
3. How often margining is applied (daily, weekly, monthly, other) 
 
 
4. What collateral thresholds or minimum transfer amounts apply?  Please specify if 

they vary by rating. 
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Question 3:  Weak independence.   
Please graph separately the distribution of correlations and covariances in the 
following portfolios:  (a) collateralised (margined) OTC derivatives; (b) 
uncollateralised OTC derivatives; and (c) repurchase agreements.  The resulting 
graphs should show: 

(i) Proportion of counterparty pairs having given correlation (in appropriate 
bands, e.g. bands of 1% from –100% to + 100%); and  

(ii) Proportion of counterparty pairs having given covariance (in appropriate 
bands as for correlation).  

 
We encourage firms to use the modelling approaches and parameterisation they 
believe appropriate for producing the graphs mentioned above.  Please include a 
brief description of the key assumptions used.   
 
If it is not feasible to use an internal model, we suggest responding firms use the 
following alternative methodology:   
 

1. For each counterparty, compute the FX and IR deltas in each major currency 
(as a guide, an internationally active bank will typically need at least 10 
currencies and therefore used 20 risk drivers to capture material risks, but it 
may not be necessary to include "minor" drivers such as equity and 
commodity risk).  Spot deltas may be used, but we encourage firms to use 
average risk over one year if possible. 

2. Compute the risks in appropriate units, namely FX deltas in US$ and IR deltas 
in US$ per basis point. Compute the covariance between each pair of 
counterparties A and B using the standard formula: 

 
Cov(A, B) = sum over risk types R and S of [delta of A in R] * [delta of B in S] * Cov(R, 
S). 
 
It is important to ensure covariances Cov(R, S) between market factors are expressed 
in the correct units, consistent with the units used for the FX and IR deltas.  
Covariances should cover a one year horizon.  
 

3. Compute the correlation between A and B as:  
 

Corr(A, B) = Cov(A, B) / [SD(A) * SD(B)] 
 
where SD(R) = the annualised standard deviation (annual volatility) for market factor 
R, and so on.  
 

4. Graph the covariances and correlations as described above. 
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ANNEX 2 
 
MEMORANDUM TO: Emmanuelle Sebton, ISDA 
FROM:   Evan Picoult 
RE:    New Proposal To Ascertain Credit Equivalent Amount  

for Counterparty Credit Risk. 
DATE:   Originally Written, September 23, 2002 
    Edited with minor changes, March 24, 2003 
 
SUMMARY OF MOTIVATION FOR PROPOSAL 
In 2001 ISDA proposed that the Credit Equivalent Amount (CEA) of counterparty 
exposure should be defined as the average of the counterparty’s expected exposure 
over a one-year horizon. 
 
ISDA’s argument in support of this proposal was made in the context of some broad 
assumptions about the characteristics of a bank’s total counterparty credit exposure 
and risk.  
 
The proposal I am putting forward has as its main objective the measurement of the 
effects of different characteristics of a bank’s total portfolio of counterparty exposure 
on the loan equivalent economic capital – i.e. on the CEA for counterparty exposure. 
 
The type of characteristics that I propose varying are: 

The effect of the number of obligors • 
• 
• 

• 

• 

The effect of the number of independent market factors 
The effect of the relative symmetry or asymmetry in exposures to a given market 
factor. 
The effect of margin and, more importantly, in having asymmetries in the 
exposures that are margined (as described below). 
The effect of the risk rating of the counterparty on the CEA. 

 
Here are some reasons for investigating the effect of these characteristics on the CEA:   
1. Not all counterparties have margin agreements.  Many large corporate customers 

do not enter into margin agreements.  In addition, in many countries around the 
world there does not exist an appropriate legal basis for a bank to have a 
sufficient degree of certainty about the legal enforceability of either netting or 
margin agreements in the event of default.   

2. Many corporate customers have issued fixed rate debt and then swapped into 
floating rate exposure – i.e. they transact an interest rate swap to pay floating 
and receive fixed.  A bank will tend to hedge this market risk by transacting 
offsetting interest rate swaps in the inter-bank market.  

3. When 1) and 2) are combined we see that although the net market risk of a large 
swap portfolio may be very small, the counterparty exposure profiles generated 
by these swaps tend to be asymmetric in the following way - in this example, 
corporate obligors tend to be net receivers of the fixed rate without any margin 
agreements and interbank obligors tend to be net receivers of floating rates with 
margin agreements.  This is one reason no conclusions about exposure over time 
can be inferred from an analysis of factor sensitivities at t =0.  
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4. Although the total counterparty exposure may depend on thousands or tens of 
thousands of market factors, changes in the total exposure to many large 
obligors tends to be dominated by a relatively few market factors (e.g. LIBOR 
yield curves of several major currencies; spot FX rates of a few major currency 
pairs such as US$/Euro, US$/Pound and US$/Yen; several major equity 
indices).  A consequence of this is that even if counterparty risk could be 
characterized as being generated by many counterparties, each with a small 
exposure (which is not the actual situation), the exposure to most counterparties 
is dominated by a relatively small number of market factors.  Consequently even 
if counterparty defaults were for the most part independent, large changes in the 
exposure across counterparties tend to be correlated. 

5. Margin agreements are themselves not uniform.  Some derivative margin 
agreements have zero threshold.  Other agreements have material thresholds, or 
thresholds that vary with the counterparties risk rating.  Some margin 
agreements require daily margining, others have varying margin intervals (e.g. 
weekly or longer). 

 
One needs to identify the consequence of these factors on the CEA of real portfolios. 
 
 
ESSENCE OF NEW PROPOSAL 
The essence of this proposal is to create test portfolios with different characteristics in 
order to systematically measure the effect of these characteristics on α.  α is the ratio 
of the Economic Capital calculated with full simulation to the Economic Capital 
calculated using the Expected Positive Exposure Profile (EPP) of each obligor.  For a 
full explanation of these concepts see the Appendix, particularly the section entitled 
“LOAN EQUIVALENT PROFILES AND SCALE FACTOR α”.   
 
α  is the scale factor needed to transform the expected positive exposure profile 
of a counterparty into an accurate measure of the loan equivalent of economic 
capital – i.e. to transform the expected positive exposure profile into a CEA for 
Basel 2.   
 
α can be defined broadly, for all obligors, or more narrowly, as a function of 
characteristics of each obligor (such as risk rating or whatever) or other features 
of the obligor’s portfolio. 
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As explained in the Appendix, the difference between Economic Capital calculated 
with full simulation versus Economic Capital calculated using the Expected Positive 
Exposure Profile of each counterparty is as follows:  

Full simulation means simulating the potential loss distribution of the portfolio of 
counterparties by coherently simulating the potential exposure of each 
counterparty over time as a consequence of the path market factors. 

• 

- The sequence of steps in full simulation is: first generate a path of market 
factors; then measure the corresponding exposure profile of each counterparty 
for that path; then simulate thousands of scenarios of defaults and recoveries, 
for the exposure profiles of all counterparties, for that path.  Finally repeat the 
sequence by looping over thousands of simulated paths of market factors.  For 
more details, see the Appendix. 

Simulation with fixed exposure profiles means simulating the potential loss 
distribution by assuming that the potential exposure of each counterparty can be 
represented by a fixed exposure profile, specific to that counterparty, that is 
independent of any particular path market factors might takes over time.  For 
example, the fixed exposure profile of a counterparty could be defined to be 
proportional to its Expected Positive Exposure Profile. 

• 

- The sequence of steps in fixed exposure profile simulation is: Simulate the 
potential loss distribution by simulating thousands of potential scenarios of 
default and recovery, using only the fixed exposure profiles of each 
counterparty.  

 
At first glance, the primary difference between full simulation and simulation with 
fixed exposure profiles is that the former entails looping over thousands of potential 
paths of market factors over time.  Whereas the latter does not directly require the 
simulation of any path of market rates – the exposure at each future date is defined by 
the fixed profile per counterparty.   
 
If the fixed exposure profile of each counterparty is defined to be proportional to the 
counterparty’s Expected Positive Exposure Profile, we can specify an additional 
important difference between the two methods for simulating economic capital. 
 
First note that when one calculates Economic Capital using each counterparty’s 
Expected Positive Exposure Profile, the sequence of steps is: The Expected Positive 
Exposure Profile of each counterparty is first calculated by looping over thousands of 
potential paths of market factors.  This simulation over potential market paths is done 
for each counterparty independently.  One then simulates the effect of default and 
recovery for the portfolio of counterparties, by representing the exposure of each 
counterparty by the counterparty’s Expected Positive Exposure Profile. 
 
The difference between the two methods of simulation of Economic Capital is: 

Full simulation entails the coherent simulation of changes in market factors and 
captures the volatility of each counterparty’s exposure and the correlation of 
exposure across counterparties.  To emphasize this point, full simulation captures 

• 

1. The volatility of the potential exposure of each counterparty and the effect of 
this volatility on Economic Capital.  All else held constant; a variable 
exposure increases the amount of Economic Capital relative to a fixed 
exposure. 
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2. The correlation of the potential exposure of each counterparty corresponding 
to each potential path of market factors.  The fact that some counterparties 
have offsetting exposure profiles to a particular path of market factors (e.g. 
one counterparty is net paying fixed while another counterparty is net 
receiving fixed) tends to reduce the Economic Capital, all else held constant.   

 
Simulation by means of the Expected Positive Exposure Profiles ignores the 
potential volatility of each counterparty’s exposure and the correlations of 
exposures between counterparties because each counterparty’s exposure profile is 
independently and separately calculated by the simulation of paths of market 
factors over time.   

• 

 
If the effect of the volatility of potential exposure and the effects of the 
correlation of potential exposure were exactly offsetting, for all tenors, then it 
should be obvious that the economic capital calculated with full simulation would 
be identical to the economic capital calculated using each counterparty’s 
expected positive exposure profile – i.e. α would equal 1.0  
 
The effect of varying the characteristics of the portfolio of obligors on the value of α 
needs to be measured.  
 
The characteristics that need to be varied include: 

N, the number of obligors.  As N increases does α asymptotically approach a 
constant and, if so, which constant?   

• 

• 

• 

• 

M, the number of independent market factors.  All else held constant, is 
α dependent on the number of independent market factors?  In what way?  What 
is the implication if changes in most exposure profiles are dominated by a 
relatively few market factors? 

 
CEAS FOR THE COUNTERPARTY CREDIT EXPOSURE OF FX AND 
DERIVATIVES; REPO AND REVERSE REPOS; AND SECURITY 
BORROWING AND LENDING. 
 
Repos and Reverse Repos are almost always transacted with daily margin and zero 
threshold.  The same is true for stock borrowing and lending.  As a consequence the 
exposure profiles of these forms of security finance are identical to that of the 
equivalent derivative transactions with daily bilateral margin agreements and zero 
threshold. 
 
As a consequence, the CEA for security finance transactions should be treated the 
same way as the counterparty credit exposure of FX and derivatives. 
 
Note one very important difference from the VAR-type calculation proposed in 
Basel 2: 

The Basel proposed VAR-type calculation is for a static portfolio over a very 
short window (e.g. five or ten days).  
In contrast an exposure profile, even for transactions with daily margin, needs to 
be calculated over the lifetime of the portfolio or the appropriate CEA time 
horizon (e.g. one year or three years), whichever is shorter. 
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To illustrate this point, consider an extreme example.  Assume a counterparty had 
entered into only one derivative transaction, a ten year interest rate swap with daily 
margin and zero threshold.  The daily margin agreement would materially reduce the 
magnitude of the potential exposure.  The potential exposure would equal the amount 
the swap could increase in value over a five or ten day margin period of risk, for each 
such forward period over the remaining life of the swap.  This is because there 
potentially could be some exposure over the full ten years of the swap.  A calculation 
of the life time credit risk of the swap would need to take into account the default 
probability over the full ten years as well as the potential exposure over that period of 
time.  
 
Consequently under this proposal, in order to have a consistent method for the 
calculation of the CEA for FX and derivative counterparty risk, repos and 
reverse repos and security borrowing and lending, an exposure profile would 
need to be calculated for all these transactions over the life of the credit exposure 
or the appropriate time horizon, whichever was shorter. 
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 APPENDIX  -  DEFINITIONS OF KEY CONCEPTS AND TERMS 
 
SIMULATION OF COUNTERPARTY EXPOSURE PROFILE 
The steps in calculating a counterparty’s exposure profile are: 
1. Simulate many paths of the state of market factors into the future, extending out 

many years over the full life of the transactions in the counterparty’s portfolio. 
2. Measure the simulated market value of each transaction of the counterparty at 

many future dates along each path, by means of full revaluation of each 
transaction, given the transaction’s terms and conditions and the simulated state of 
the market.  

3. Calculate the simulated exposure of the counterparty at a set of future dates 
along each simulated path, by aggregating the simulated future market value of 
each transaction of the counterparty, at a future date, in the context of legally 
enforceable risk mitigant agreements (e.g. netting, margin, option to early 
termination).  

4. Calculate the potential exposure to the counterparty at some specified 
confidence level, given the distribution of simulated exposures at each future 
time.  

 
A counterparty’s exposure profile is a statistical picture of a firm’s potential exposure 
to the counterparty over time; i.e. over the lifetime of the remaining transactions with 
the counterparty.  It can be defined at any confidence level.  For example, one can 
calculate: 

The exposure profile of the counterparty at a high confidence level (e.g. 99% 
CL).  

• 

• 

• 

The expected positive exposure profile - EPP(t), whose value at time t is defined 
as the expected value of all positive exposures (the obligor owes our firm), with 
negative exposures (our firm owes the obligor) set to zero. 
The negative exposure profile at any specified confidence level (useful for 
measuring liquidity risk). 

 
FULL SIMULATION OF ECONOMIC CAPITAL FOR COUNTERPARTY 
RISK 
The calculation of economic capital for the counterparty risk of a portfolio of many 
obligors will be based on the potential loss distribution, as below. 

Probability Distribution of Potential Credit Loss
 for a set of Many Obligors
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The potential loss distribution critically depends on: 
The definition of potential loss: • 
- Loss only due to potential default and potential recovery, 
- Loss due to potential fall of economic value: This includes not only the loss 

due to potential default and recovery, but also the loss due to an increase in 
the market value adjustment (a.k.a. “credit value adjustment” at some firms) 
for counterparty credit risk.  The market value adjustment is the adjustment 
to the risk free valuation that takes into account each counterparty’s risk 
rating and general market spreads.  

The time horizon over which the loss is calculated (e.g. one year, three years, 
lifetime). 

• 

 
Steps For Full Simulation Of Potential Loss Distribution Due To Default: 
1. Simulate many paths of the state of market factors into the future.  Each path 

specifies the value of all the market rates (needed to value all contracts in the 
portfolio) at a set of future dates 

2. For each simulated path calculate the simulated exposure of each counterparty 
at a set of future dates: 
a. Measure the simulated market value of each transaction at many future dates 

along the path, as above. 
b. Calculate the simulated exposure of each counterparty at many future dates 

along the path, by aggregating the potential market value of each transaction 
in accordance with all legally enforceable risk mitigant agreements (e.g. 
netting, margin, option to early termination), as above3. 

3. For each simulated path, calculate the potential loss for all of the counterparties 
in the portfolio.  In other words, for each simulated path, at a set of forward 
intervals, simulate thousands of scenarios of obligor default and recovery.   Each 
scenarios will differ by how many and by which obligors default in any future 
interval and by the simulated recovery, given default.  

4. From the set of simulated paths, calculate an overall potential loss distribution.  
Economic capital is the difference between the potential loss at a high confidence 
level and the expected loss. 

 
If we knew the future state of the market with certainty we would only need one path 
to describe the future state of the market.  The simulated exposure profile of each 
counterparty (step 2) would be the loan equivalent for that path and we would stop 
our calculation with step 4 without the need to loop over many simulated paths of the 
market.  In reality we do not know the future state of the market so we must loop over 
steps 1 to 3 for thousands of simulated paths.  All things being equal, having variable 
rather than fixed exposures increases the width of the loss distribution and increases 
the amount of economic capital needed. 
  

                                                 
3 Note: Step 2 is equivalent to calculating a path specific loan equivalent exposure of each 
counterparty.  That is, for a given path, each counterparty will have a specific exposure at each future 
date.  More generally, for a specific path the credit exposure (positive or negative at any future date) 
can be replicated by a portfolio of spot and forward loans from and to the counterparty (i.e. loans from 
when our firm owes the cntprty, loans to when cntprty owes us). 
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MEASURING SCALE FACTOR α  AND DEFINING THE LOAN 
EQUIVALENT EXPOSURE FOR ECONOMIC CAPITAL 
 
Let us define two measures of the economic capital of a portfolio P: 
 
EC(P; CL, T)Full_Sim_Default =   Economic Capital calculated by Full Simulation,  
        default only 
 
EC(P; CL, T)Fixed_EPP_Sim_Default =   Economic Capital calculated by assuming the  
   exposure profile of each counterparty can be  
   represented by a fixed exposure profile equal to  
   its Expected Positive Profile. 
 
                             P = The portfolio P, composed of N counterparties, 
   each with many transactions. 
 
 CL         =    Confidence level at which EC is measured. 
 
 T =    Time horizon over which EC is measured. 
 
 
Therefore, the scaling factor, α, is defined as4: 
 

 
 α(P; CL, T)    =      EC(P; CL, T)Full_Sim_Default / EC(P; CL, T)Fixed_EPP_Sim_Default 

 
 
The difference between calculating Economic Capital with full simulation and with a 
simulation using the Expected Positive Profile is described and discussed in the main 
text  
 
LOAN EQUIVALENT PROFILES AND SCALE FACTOR α 
From the above description of the calculation of the potential loss distribution due to 
default we can readily derive the appropriate definition of a loan equivalent of 
counterparty risk for economic capital.  It is the fixed exposure profile that under 
simulation of defaults and recoveries generates the same economic capital as 
generated by full simulation.  
 
It is not necessary for the potential loss distribution calculated by full simulation and 
the potential loss distribution calculated by fixed exposure profiles to be identical at 
each confidence level.  It is only necessary that the two loss distributions share one 
aspect in common:  the difference between the loss at the confidence level used for 
economic capital and the expected loss should be identical for the two distributions.   
 
Note that just as the loan equivalent of counterparty risk for economic capital will 
depend on the confidence level and the characteristics of the portfolio, it may also 

                                                 
4 I have made use of the fact that the Economic Capital of the set of fixed exposure profiles 
{α*EPPk(t)} is equal to α times the Economic Capital of the set of fixed exposure profiles {EPPk(t)}. 
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depend on whether Economic Capital is defined from a default only perspective (as 
above) or a loss of economic value perspective (as described above).    
 
Scale Factor α 
 
We thus see another way of expressing α, defined above as the ratio of Economic 
Capital due to default and recoveries calculated with full simulation to the Economic 
Capital calculated with Expected Positive Profiles: 
 
Let us define: 
 
LEPk(P; CL, T)  = Loan Equivalent Exposure Profile of counterparty k,  
    calculated under full simulation – i.e. the Fixed  
    Profile for each counterparty that results in the same  
    economic capital due to default and recovery as  
    derived by full simulation. 
 
  EPPk   =  Expected Positive Exposure Profile of counterparty k 
    (see definition above) 
     
Then  
 
 LEPk(P; CL, T)  = α(P; CL, T) * EPPk 
 
Where α, P, CL and T are defined as above. 
 
The scale factor, α, will depend on the composition of the portfolio as well as both the 
confidence level and the time horizon over which Economic Capital is defined. 
 
A bank can specify α for all obligors with counterparty exposure, based on the 
general characteristics of the total portfolio of all obligors.  This would be appropriate 
for measuring total regulatory risk weighted assets for counterparty risk.  In principal, 
a bank could also specify α as a function of some characteristic of a sub-group of 
counterparties, such as their risk rating.  The difficulty with the latter is that since α 
depends on the characteristics of the portfolio for which it is measured, including the 
degree of portfolio diversification, it may be difficult to consistently define α for 
subsets of counterparties.  
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ANNEX 3 
 
CALCULATION OF ECONOMIC CAPITAL BASED ON EPE 
 
OTC derivative counterparty exposures are variable and driven by market risk factors 
(mainly the principal components of the most liquid interest and foreign exchange 
rates, commodities and equities prices). The tail of the probability distribution of 
potential credit losses over a certain time horizon is determined primarily by the credit 
and market concentrations in the portfolio of counterparty exposures. 
 
In its response to the Basel Committee’s Consultative Paper of January 2001 (CP2), 
ISDA has shown that, in an asymptotically fine-grained portfolio of exposures with 
zero market-induced correlation on average, the economic capital could be calculated 
based on the expected positive exposure (EPE) to each counterparty. This proposal is 
in contrast, for example, to an alternative where capital is based on high confidence-
level counterparty potential exposures (e.g. at 95% or 99% confidence levels). 
 
In this paper, we describe a model to represent a portfolio of OTC derivatives 
counterparty exposures and estimate the proper equivalence factor α to be applied to 
EPE for the calculation of the economic capital of a portfolio of finite and possibly 
correlated counterparty exposures. 
 
The factor α has been defined by Evan Picoult (Citigroup) as the ratio A/B where: 
 
A = 99.9%-confidence default-only loss based on coherent simulation of a portfolio of 
counterparty exposures; 
B = 99.9%-confidence default-only loss based on the expected positive exposure 
(EPE) to each counterparty. 
 
Our model retains the essential elements of the risk dynamics of market-driven 
exposures and yet it is sufficiently simple and flexible to allow for the isolation of the 
fundamental structural characteristics of portfolios of exposures and the measurement 
of the sensitivity of α with respect to each of them.  
 
Specifically, we look into how α varies with respect to: 
1. Initial level of current exposures; 
2. Correlation among default drivers in a normal 1-factor asset model; 
3. Number of market risk factors driving the counterparty exposures; 
4. Granularity of the portfolio of counterparty exposures; 
5. Number of counterparties; 
6. Number of margined counterparties 
7. Probability of default of the counterparties over the horizon; 
8. Confidence level used to define economic capital. 
 

Our results suggest that, for a typical portfolio held by a large derivatives dealer, α is
most likely to be in the range of 1.0 to 1.25. Only in a few extreme portfolio
configurations α is larger than 1.5. 
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I) A MODEL FOR DERIVATIVES COUNTERPARTY CREDIT RISK 
 
2-date factor model for market-driven exposures 
 
We assume a portfolio of i=1,…,N derivatives counterparties and a 2-date model for 
market changes where:  
• the value of the derivatives trades with each counterparty “i” is Vi(0) at t=0;  
• the value of the trades with each counterparty at t=horizon is a linear function of 

a set of “K” orthogonal market risk factors: 
 
 

( )KK,i11,iiii fb...fbm)0(V)horizon(V ⋅++⋅⋅+=  
for i = 1,…,N 
 
 
Vi(0) is determined by the current exposure (CE) parameter: 
• Vi(0) = -CE, for “i” equal to an odd number (i=1,3,5,…); 
• Vi(0) = +CE, for “i” equal to an even number (i=2,4,6,…). 
 
According with this specification, half of the counterparties start with mark-to-market 
value equal to +CE and half of the counterparties with mark-to-market value equal to 
–CE. 
 
When examining the sensitivity of α to granularity, we assume that the log(mi)’s are 
independent (across counterparties i’s) normal random variables with mean –G2/2 and 
variance G2. “G” defines the amount of dispersion of the standard deviations of 
Vi(horizon), i=1,…,N. Such dispersion breaks the homogeneity of the portfolio and 
makes some counterparty exposures more volatile (“larger”) than others. Larger “G’s” 
imply more granular portfolios of market-driven counterparty exposures. 
 
Factor sensitivities 
 
All factor sensitivities are independent, randomly generated by the following scheme: 
 
1) for each counterparty “i”, we generate bi,k = 2(Ui,k-0.5) for k=1,…,K; “U” is a 

random variable uniformly distributed on [0,1]; all Ui,k’s are independent; 
2) we then normalize the vector (bi,1 ,…, bi,K) of counterparty’s sensitivities by 

dividing each bi,k by ∑k
2
k,ib . 

 
After normalization, each counterparty’s vector of market factor sensitivities has 
norm equal to one. Moreover, the expected value of the sum (across counterparties) of 
sensitivities to each market risk factor is zero (balanced book, on average). 
 
Margined counterparties 
 
Margined counterparties could induce concentration of exposures by creating a “one-
sided exposure book”. This would be the case, for example, if a dealer predominantly 
payed fixed in interest-rate swaps with customers (unmargined) and hedged its market 
risk by receiving floating in offsetting swaps with other dealers (margined). In that 
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case, the exposures to counterparties would be concentrated in scenarios where 
interest rates go up. When exposures are generated by “many” market risk factors, the 
one-side-book effect tends to be reduced by diversification. 
 
We examine the effect of margining in the context of our model by allowing different 
degrees of one-sided book. 
 
Let “m” be the fraction of margined counterparties on one side of the book. “m” is 
defined as the ratio of the number of margined counterparties by the number of 
counterparties on one side of the book.  
 
If m=0, the exposure book is balanced; i.e. all counterparties in the book are 
unmargined. 
 
If m=1, the exposure book is fully one-sided; i.e. half of counterparties, which are on 
the same side of the book, are margined. 
 
We define “the same side of the book” based on the sign of the cosine of the hyper-
angle between the vectors of sensitivities bi’s. Counterparty “i” is on the same side of 
the book as counterparty “1” if the cosine of the hyper-angle between b1 and bi is 
positive. 
 
Once we have defined the two “sides” of the book, we randomly choose a fraction 
“m” of the counterparties on one side of the book to be margined with zero initial and 
variation margin thresholds. The exposures (current and potential) to margined 
counterparties are identically equal to zero. 
 
Simulation of market-driven exposures-at-default 
 
We simulate j=1,…,2000 market scenarios. Each market scenario corresponds to a 
realization of the “K” independent market risk factors f1,j,…,fK,j. Each market risk 
factor has a standard normal distribution with mean equal to zero and variance equal 
to one. The values of the positions with each and all counterparties (Vi(horizon)) are 
computed by the linear model above. All Vi(horizon), i=1,…,N, have normal 
distributions with mean equal to Vi(0) and variance equal to mi. When G=0, all mi’s 
are equal to one. The exposure-at-default Ei,j to each counterparty “i” in market 
scenario “j” is: 
 

( )0),horizon(VmaxE ij,i =  
 
After the market simulation is concluded, we have a matrix (2000 x N) of N 
counterparty exposures in each of 2000 market scenarios. Each row of the matrix 
corresponds to a set of coherent counterparty exposures, i.e., exposures generated by 
the same market scenario. 
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Based on this matrix we compute the expected positive exposure (EPE) to each 
counterparty: 
 

∑=
j

j,ii 2000/EEPE  

 
When “G” and “CE” are equal to zero, the expected exposures to all counterparties 
are the same (within the random error of the simulation) and equal to 0.3989.  
 
When CE ≠ 0, there are two values of expected exposures: one for the “i” odd 
counterparties and another for the “i” even counterparties. The effect of CE ≠ 0 is 
important because it creates volatility in the exposure to defaulted counterparties even 
when capital is calculated via the EPE-based simulation. That is, the total exposure to 
defaulted counterparties in each credit scenario depends on the specific set of 
counterparties that defaulted. In the limit, when CE is large, the volatility created by 
the binary EPEi’s dominates the market-induced volatility and α converges to one. 
 
In typical dealers’ portfolios of counterparty exposures, the EPEs can vary quite a lot 
across counterparties. The variability of EPEs can be large when compared to market-
induced variability of exposures. This tends to reduce α toward one. Our model 
captures some, but not all, of the attenuating effect of CE on α. Thus, we expect the 
α’s produced by our model to be higher than the ones of real portfolios with more 
heterogeneity of EPEs across counterparties. 
 
Simulation of default events 
 
The probability of default “PD” over the horizon is the same for all counterparties. 
The recovery rates are also the same and are assumed to be zero for all counterparties. 
Those assumptions are consistent with the definition of a homogeneous portfolio. 
 
We simulate h=1,…,200,000 credit scenarios each consisting of a random set of 
counterparties that default.  
 
Default scenarios are independent of market scenarios. That is, we assume away right-
way and wrong-way exposures. 
 
When examining the sensitivity of α to the correlation among counterparty defaults, 
we use the following one-factor asset-based default model: 
 
Let “Ai” be the default driver for counterparty “i”. 
 

ifi ZR1ZRA ⋅−+⋅=  
 
where 
 
“R” is the constant pairwise correlation among default drivers; 
“Zf” is a N(0,1) systematic risk factor driving defaults; 
“Zi” are independent N(0,1) idiosyncratic random drivers (i.e. specific default driver 
for counterparty “i”); 
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For each credit scenario “h” we simulate Zf and Zi, i=1,…,N. A counterparty defaults 
if Ai,h < N-1(PD). 
 
Computation of “full simulation” economic capital 
 
For each credit scenario, we randomly select one single market scenario and compute 
the portfolio default losses by adding up the exposures to the counterparties that have 
defaulted in the credit scenario. Since we have 200,000 default scenarios and 2,000 
market scenarios, we expect that each market scenario “j” will be randomly selected 
about 100 times. 
 
Observe that the portfolio loss in each credit scenario “h” is subject to two sources of 
randomness:  
a) the number of default events in the credit scenario (default volatility);  
b) the sum of the exposures to the defaulted counterparties in the credit/market 

scenario (exposure volatility). 
 
Computation of EPE economic capital 
 
For each credit scenario generated for the “full simulation”, we compute the total 
default losses by adding up the expected exposures to the counterparties that have 
defaulted.  
 
Observe that the portfolio loss in each credit scenario “h” is subject to the same two 
sources of randomness mentioned above. In the case of CE=0, there is no exposure 
volatility; i.e., all EPEi’s are the same. 
 
 
II) SENSITIVITY ANALYSIS 
 
Base case 
 
We define a base case that we consider representative of a large dealer: 
 
• number of “effective” market risk factors = 3 
• number of “effective” counterparties = 200 
• PD = 0.0030 
• “homogeneous” portfolio: [Vi(t=horizon)-Vi(t=0)] is N(0,1) for i=1,…,N 
• 1-factor credit model with asset correlations 0.22; 
• CE = 1.36 which implies, in our model, that the ratio of the maximum potential 

(95%, over 1 year) and current exposures of the portfolio is 1.30; 
• Economic capital defined at 99.9% statistical confidence level 
 

α is equal to 1.09 in the base case  
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In the sensitivity analysis to follow, the model parameters are kept as specified in the 
base case unless explicitly modified.  
 
1) Sensitivity of α to the pairwise correlation between default drivers 
 
R       stdev(nh)    nh(99.9%)     α 
 
0.00    0.77          4          1.43 
0.12       1.11          9          1.21 
0.22       1.51         15          1.09  (base case) 
0.24       1.60         17          1.08 
0.50       3.20         44          1.02 
 
“R” is the pairwise correlation between default drivers; 
 
“stdev(nh)” is the standard deviation of the number of default events that occur in each 
credit scenario “h”; 
 
“nh(99.9%)” is the 99.9-percentile of the distribution of the number of defaults (nh) in 
each credit scenario. It is a metric of the extension of the tail the distribution of the 
number of defaults. 
 
The correlation among defaults is a key determinant of α. The stronger the correlation 
is, the higher the variability of the number of defaults across credit scenarios. α 
converges to one: its numerator and denominator are driven by the variability of the 
number of defaults and the variability of exposures becomes less relevant. 
 
2) Sensitivity of α to the level of current exposures 
 
CE       MPE/CE     avg(EEi)         α 
 
0                --        0.401      1.35 
1        1.60       0.584      1.14 
1.36     1.30       0.720      1.09  (base case) 
2        1.09       1.009      1.05 
3        1.05       1.501      1.03 
 
“CE” is the initial level of mark-to-market value as outlined in the model specification 
above; 
 
“MPE/CE” is the ratio of the maximum potential (95%, over 1 year) and current 
exposures of the portfolio; 
 
“avg(EEi)” is the average expected exposure across counterparties. Observe that in the 
extreme case of CE=3, avg(EEi)=1.5 as expected. 
 
The higher the CE is, the higher the variability of the sum of EPEi’s to the 
counterparties that default. α converges to one because its numerator and denominator 
are dominated by the variability of EPEi’s.  
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Example: when CE=3, half of the counterparties have EPE equal to 3 and half of the 
counterparties have EPE equal to zero. Suppose that there are 15 default events in a 
tail credit scenario; the variance of the total exposure conditional on 15 default events 
is: 15 x 0.5 x 0.5 x (3-0)2 = 33.75 and its standard deviation is 5.81. Compare that 
number with the market-induced variance of exposures conditional on 15 defaults: 7.5 
x 12 = 7.5. Conclusion: the variability of the sum of EPEis is much larger than the 
additional variability introduced by the market risk factors. 
 
3) Sensitivity of α to the number of market risk factors (K) 
 
K           avgCorr        α 
 
 1          0.164      1.10 
 3          0.048         1.09  (base case) 
 5          0.029         1.08 
10          0.015         1.08 
50          0.002         1.08 
 
“K” is the number of orthogonal market risk factors; 
 
“avgCorr” is the average pairwise correlation of counterparty exposures induced by 
the finite (and possibly small) number of market risk factors. 
 
The number of orthogonal (i.e. uncorrelated) market risk factors determines the 
average level of pairwise correlations between market-driven counterparty exposures. 
A large number of orthogonal market risk factors reduce the average pairwise 
correlation and the variability of the sum of market-driven exposures. Consequently, 
α decreases. 
 
4) Sensitivity of α to the granularity of the portfolio of counterparty exposures 
(heterogeneous portfolio) 
 
 G           1/H      MPE/CE    max/min      α  
 
0.0       200      1.30          1         1.09  (base case) 
0.5       157      1.36          8         1.10 
1.0        86      1.46        69         1.21 
1.5        33      1.56      577         1.34 
 
“G” is a measure of the dispersion of the sensitivities of the counterparty positions to 
the market risk factors. The larger “G” is, the more heterogeneous is the portfolio of 
counterparty exposures in terms of their responses to changes in market risk factors; 
 
“H” is the Herfindahl concentration index of counterparty sensitivities to markets and 
“1/H” can be interpreted as the effective number of counterparties in the portfolio, 
i.e., the number of counterparties in a homogeneous portfolio that would have the 
same H as the granular portfolio; 
 
“MPE/CE” is the ratio of the maximum potential (95%, over 1 year) and current 
exposures of the portfolio; 
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“max/min” is the ratio of the 99-percentile over the 1-percentile of the probability 
distribution of mi’s. When G=1, the 99% largest exposure is 104 times larger than the 
1% smallest.  
 
Granularity in the “deltas” of counterparty exposures to market risk factors is an 
important determinant of α. The variability of the market-driven exposures increases 
because of the higher heterogeneity in the magnitudes of the market-driven potential 
exposures. 
 
5) Sensitivity of α to the number counterparties (N) 
 
N                α 
 
20         1.26 
50         1.22 
100        1.10 
200        1.09  (base case) 
500        1.04 
 
A higher number of counterparties causes a higher number of defaults nh per credit 
scenario “h”. A higher number of defaults causes the variability of the sum of weakly 
correlated exposures to counterparties to decrease relative to the sum of the EPEi’s. 
 
6) Sensitivity of α to the fraction of margined counterparties (m) in one side of 
the book 
 
m         MPE/CE     α 
 
0.00      1.30      1.09  (base case) 
0.25      1.30      1.10 
0.50      1.36      1.11 
0.75      1.54      1.18 
1.00      1.83      1.24 
 
A higher fraction of margined counterparties on one side of the book induces 
concentration of exposures. The concentration is mitigated by the diversification 
across K=3 independent market risk factors.  
With K=1 and m=1 (most extreme case), α is 1.42. 
 
7) Sensitivity of α to the probability of default (PD) 
 
PD             α 
 
0.001      1.17 
0.003      1.09  (base case) 
0.005      1.07 
0.01       1.06 
0.05       1.05 
 

 52



A higher probability of default “PD” causes a higher expected number of defaults nh 
per credit scenario “h”. The higher number of defaults causes the variability of the 
total exposures to defaulted counterparties to decrease relative to the sum of the 
EPEi’s. 
 
8) Sensitivity of α to the confidence level defining economic capital 
 
confidence      α 
level 
 
99.0%          1.07 
99.5%          1.10 
99.9%          1.09  (base case) 
 
The non-monotonic behavior of α with respect to the level of confidence used to 
define economic capital stems primarily from the shape of the tail of the loss 
distribution in the EPE-based calculation. The tail of the EPE-based loss distribution 
displays “discontinuities” corresponding to the discreteness of the probability 
distribution of the number of defaults per credit scenario. 
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ANNEX 4 
 

ANALYTIC α CALCULATIONS 
 
1. Summary 
As explained at III, main text, work has been done by both members of the ISDA 
counterparty risk working group and independently by Michael Gibson at the Federal 
Reserve Board5, to assess the additional capital required within ISDA’s EPE 
framework for risks not covered in the original response6. To discuss this work we 
refer to a quantity α defined as the ratio A/ B where: 

• A: = 99.9% loss with correlated market positions and stochastic exposures. 
• B: = 99.9% loss for a corresponding portfolio with fixed exposures equal to EPE. 

Michael Gibson’s work is presented in terms of the understatement U of the standard 
deviation of the loss distribution, which is used to assess approximately the 
understatement of risk at the 99.9th percentile. For comparison with our work, we 
redefine U here as the equivalent direct concept, the understatement of the 99.9% 
confidence point. Then U is related to α by 
 α = 1 + U 

In this way, Gibson’s and ISDA’s results are made directly comparable. ISDA’s work 
has been both numerical (see Annex 3) and theoretical (as presented below) with good 
agreement between the methods. Furthermore, except for its use of the granularity 
adjustment technique instead of scaling by variances to obtain exact limiting values 
for α, ISDA’s theoretical work is conceptually very similar to Gibson’s and the whole 
therefore appears to represent a conceptual consensus. 

In this Annex,  

• We present values of α obtained using ISDA’s theoretical method and compare 
these to the simulation results set out in Annex 3. Agreement between theory and 
simulation is close.  See Attachment 1. 

• We provide further values of α using Michael Gibson’s formulae, which 
essentially corresponds to the case of an infinitely granular portfolio. See 
Attachment 2. These values of α are smaller than those obtained by ISDA, due to 
the reference to an infinite portfolio. 

• The methodology for ISDA’s analytic results is presented and compared with 
Michael Gibson’s formulae.   

2. Analytic calculations for ISDA’s α simulations 
Eduardo Canabarro’s simulations (Annex 3) determine α with various parameter 
combinations, using a model in which default rates are driven by a single factor 
conceptually consistent with both the IRB approach and the framework underlying 
ISDA’s original proposals on EPE. 

                                                 
5 Michael Gibson, “Regulatory Capital for counterparty credit risk: A response to ISDA’s proposal” 
Federal Reserve Board, transmitted 15 November, 2002. Throughout, references to Gibson are to this 
article. 
6 We are not referring to wrong way risk which is discussed separately at II in the main body of this 
document. 
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We give an analytic version of most of these simulations using the granularity 
adjustment method. Results are close to and support Eduardo’s results. 
 
Set-up 
The set-up for Eduardo’s work is as follows: 

N counterparties in a Vasicek one factor model conceptually consistent with IRB. • 
• 

• 

We consider a one period model i.e. values are taken at the horizon. Exposure is 
where V is market value at one year. ))1(,0max()1( VE =

We work to a standardized σ  = 1 and opening values are expressed as multiples  
of σ. In the set up current exposure V uCE ±==)0(  where u = 1.36 in the “base 
case”.  

Results 
See Attachment 1.  

Results agree closely to Eduardo’s. • 
• We have not performed the set of results for non zero G (Set 4) as this involves 

extra difficulties. 

Note on validity of results and calculations 
Results are first order approximations in (1 / N) and in c respectively, where N is the 
number of obligors and c the average covariance between their market values. The 
slopes with respect to these parameters are exact, but for 1 0,/ ≠cN  these are not 
exact andaccordingly should be seen as supplementary to the simulation results 
presented in Annex 3, providing an alternative point of view on the “ingredients” 
affecting α. 

Calculation approach 
α is defined as a ratio A/ B where: 

A: = 99.9% loss using full simulation with correlated market positions and stochastic 
exposures 
B: = 99.9% loss for a corresponding portfolio with fixed exposures equal to EPE. 
 
The approach here is to calculate both these percentiles using the granularity 
adjustment approach 
 )()( %9.99%9.99%9.99 xxt βµ +=  
where the summands are the systematic risk and granularity adjustment, evaluated at 
the 99.9% value of the systematic variable X The quantity α is then the ratio of 
percentiles. 
 
The systematic risk is the same in each case, since as was shown in the ISDA 
response it is given by EPE. The relevant calculations of the granularity adjustment 
for the Vasicek model have already been done so nothing essentially new is needed 
here – see Attachment 4. The difficulty lies in calculating the conditional variance of 
the portfolio due to exposure covariance in Case A, when exposures are correlated. 
Note that unlike ISDA’s response to CP2, Annex 1, we need to work here in the 
simpler one period model i.e. we only consider values at time t = 1, rather than over 
the interval 10 ≤≤ t . This one period approach displays all the main features of t he 
more complex continuous time approach and is consistent with the simulation work 
described in Annex 3.  Applying the results from ISDA’s response to CP2, Annex 1, 
to the one period case we have conditional on the value of the systematic factor X  
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A

AAPEx)(µ ∑∑ +−=
BA

BABA
A

AAA EEPPPPFx
,

22 ))1(),1(cov()1()(σ  (1) 

where are the expected positive exposure and RMS exposure respectivelyAA FE ,

AP

7 We 
write for , the default probability conditional on the systematic factor. As 
remarked µ is the same in both case A and case B.  

)(xPA

In a portfolio of N assets and homogeneous with respect to credit quality, is 
independent of A and (1) becomes  

PPA ≡

 )()( xPENx ><=µ   (2) 
and  
  cPNNPEFNPFNPFNx 22222222 )1()()( −+><−><+><−><=σ
which simplifies to  
 (3) cPNNPENPFNx 22222 )1()( −+><−><=σ

2where the brackets denote average values  over the portfolio, e.g. ∑>=
A

ANA FF 21<  and, 

(Michael Gibson’s notation from equation A.10 of his paper),  
 >=< ))1(),1((: BA EECovc   (4) 
is the average covariance between distinct exposures (we have eliminated the 
diagonal term using the relationship Var  which holds in the one 
period model). 

22))1(( AAA EFE −=

We need to calculate all the terms of σ2. The most difficult is the exposure covariance 
term c which we deal with next. 
 
Exposure covariance 
Non zero average covariance between exposures arises due to scattering of the 
correlations between pairs of assets around zero, because exposure covariance is a 
convex function of market covariance. In addition, scenarios have been considered in 
Annex 3 in which counterparties with different positions have differential tendency to 
be margined. This gives rise to direct exposure covariance, the effect of which can 
also be calculated using the methods presented here, but we have not included these 
calculations in the below. 

Let the market values for distinct obligors A and B at time t be VA,B (t). We consider a 
one period model with t = 0, 1 and write x, y for the changes in market values over the 
period. Let these have correlation ρ (i.e. ρ is the market value correlation). Then (in 
the one period setting): 

 (5) BABABA EEdxdyyxnyVxVEECov −++= ∫∫ ),,())0(,0max())0(,0max())1(),1(( ρ
where ),,( ρyxn is the bivariate standard normal density. We evaluate this as a power 
series in ρ using the tetrachoric expansion (see Abramowitz and Stegun, §26.3.29). 
After integrating term-wise, using integration by parts, this gives: 

 ∑
∞

=

+

+
==

0

)()(
1

))0(())0((
)!1(

))1(),1((
m

B
m

A
m

m

BAAB VNVN
m

EECovc ρ  (6) 

                                                 
7 Throughout, exposures without time arguments, i.e. EA and later E+, E- refer to EPE and likewise F 
refers to RMSE, while EA(1) etc means actual exposure at time t = 1. 
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where N is the standard normal cumulative density. The linear term will contribute 
nothing on taking expectations. Working to “first order” we will only take the 
quadratic term, arriving at: 

 ))0(())0((
2

))1(),1((
2

BABA VnVnEECov ρ
=  (7) 

where n is the standard normal density.  

We now take expectations. Here we assume that correlations are independent of 
current exposure levels (Eduardo’s simulations specify the current exposure levels as 
+/- u independent of positions, so this assumption is correct, and indeed it is generally 
a reasonable assumption). Then to first order: 

 >><><<= 2))0(())0((
2
1 ρBA VnVnc  (8) 

where as above, the brackets refer to averaging across the portfolio of obligors. 
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Relationship to the number of market factors 
In Annex 3 it is assumed that, independent of the number N of obligors, there is a 
fixed number K of market factors in which obligors take positions at random8. 

Thus suppose A and B have exposures depending on K orthogonalised market factors 
represented by normalised independent r.v’s θAk. Thus for all A: 

 where ∑∑
=

+=
K

i
kAkAA XVV

1
)0()1( θ 1

1

2 =
=

K

i
Akθ  (9) 

Then the correlation ρ between VA and VB is  

  (10) ∑
=

=
K

i
BkAkAB

1
θθρ

We need the mean square of this correlation across the portfolio (denoted by brackets 
as before): 
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where we have used ∑  to derive , given that the positions are 

chosen at random. Substituting in (8) gives 

1
1

2 =
=

K

i
Akθ KAk /12 >=< θ

 
K

VnVnc BA

2
))0(())0(( >><<

=  (12) 

for A ≠ B. Finally, in the test portfolios (Annex 3) we have V uA ±=)0( for a specified 
u, and we arrive at last at a simple formula relating average covariance to the number 
of underlying factors:  

 
K
unc

2
)( 2

=  (13) 

Other terms 
The following auxiliary calculations are essentially in the original ISDA document on 
counterparty risk.. In the simulations each current exposure is one of ± u and we use 
this to simplify the calculations, as above. We write subscript +/- to distinguish the 
two cases. We have: 

Expected exposures (EPE) 
 )()( unuuNE +=+  and )()( unuuNE +−−=−  (14) 
RMS exposures 
 )  and  (15) ()()1( 22 uunuNuF ++=+ )()()1( 22 uunuNuF −−+=−

We shall need: 
 1 (16) 222 +=+ −+ uFF
Conditional mean and variance 
We can now put these together to write down the conditional mean and variance of 
the loss distribution given the value of the systematic variable X. By (2) – (3): 

 )()( xPENx ><=µ   (17) 
  (18) cxPNNxPENxPFNx 22222 )()1()()()( −+><−><=σ

                                                 
8 This approach avoids the difficulty noted by Gibson (A-1) of specifying the expanded correlation 
structure as N is increased. This is similar to the underlying approach for one factor modelling, where 
by viewing correlation as arising via coupling to a systematic variable one can specify that new 
obligors are identical to the old ones, rather than worrying about creating new correlations for them. 
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We now write these out explicitly in Eduardo’s cases: 
 
Case (A): Portfolio considered as consisting of fixed exposures equal to EPE.  
Then 

 PEENx )(
2

)( −+ +=µ  (19) 

 )1()(
2

)( 222 PPEENx −+= −+σ  (20) 

Case (B): Actual (correlated stochastic) exposures 

We have from (2): PEENx )(
2

)( −+ +=µ  as before (21) 

  
Using (3), (13) and (16), we also have 

 2
2

2222 ]
2

)()1()(
2

[)1(
2

)( P
K
unNNEENPuNx −++−++= −+σ  (22) 

 
Obtaining the percentiles, and hence α 
In both cases A and B the systematic risk is given by  

 )()(
2

)( %9.99%9.99 xPEENx −+ +=µ  (23) 

For the unsystematic risk element we use the granularity adjustment (Wilde, “Probing 
Granularity”, RISK, August 2001, equation 49). 

 






−
=

dxd
f

dx
d

f
X

X /2
1 2

µ
σβ  (24) 

Where  

 )()( xPx εµ =  with )(
2 −+ += EENε  (25) 

which is fixed depending on the portfolio. Referring to the formulae above we have, 
both cases, the general form: 
  (26) 22 )()()( xbPxaPx +=σ
Where a and b are coefficients depending on which case we are in. The calculation of 
the granularity adjustment in this case is dealt with in Attachment 3. We  get 
coefficients βa and βb depending on the default probability, percentile confidence 
level and asset correlation but nothing else (and therefore which are the same for 
cases A and B) such that in each case: 

 
%9.99

%9.99
xx

ba
baPt

=

++= β
ε

β
ε

ε ; 
%9.99

/)(/)(
/)(/)(

xxba

ba

AbAaP
BbBaP

=
++
++

=
εβεβε
εβεβεα  (27) 

VBA code implementing this formula and used for the results is exhibited at 
Attachment 2. 
 

                                                 
9 See for example, Gordy, “A risk factor model for ratings based capital rules”, Federal Reserve, 
October 2002, or Martin and  Wilde “Unsystematic Credit Risk”, RISK, November  2002. 
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3. Discussion of Michael Gibson’s results 
The results discussed here are all to be found in Section 3 of Gibson’s paper.  
 
Summary of Gibson’s paper Section 3 (with translation to ISDA terminology) 
Section 3 of Gibson assesses the impact of non zero covariances between market 
positions, paralleling Eduardo’s work and the above to some extent. Gibson provides 
 
• A formula for exposure covariance with given market correlation (page 6); 
• A formula for the amount of understatement U of risk using EPE when exposure 

covariance is present, in the case when the portfolio is infinite.  
• Gibson’s U (with our interpretation of U as the direct understatment of pecentiles) 

is related to ISDA’s α by U=−1α , and so conveys the same information. 
 
Brief conclusions on this and its relation to ISDA’s work are as follows: 

• The two ingredients (determination of the covariance c between exposures, and of 
the sensitivity of percentiles to c) are the same as the two essential ingredients in 
the above analysis and so ISDA’s work and Gibson’s are in essential accord.  

• Gibson has not calculated numerical values of U to compare with ISDA’s, but this 
can easily be done using Gibson’s formulae in the ISDA scenarios – see 
Attachment 2. Essentially, Gibson’s results give lower values of understatement 
than ISDA’s, because Gibson works in the case N = ∞ while the results in Annex 
3  are for a finite portfolio. 

• Gibson’s formula for U is based on scaling percentiles according to the impact on 
standard deviation. This is an approximate treatment, but  often gives good results. 
Below, we present an exact first order formula which gives higher but not very 
different values for U as a function of c. The most material difference between 
Gibson and ISDA is therefore not to do with c but arises in respect of 
assumptions about N, the number of obligors. 

Attachment 2 shows results in the Gibson case obtained using respectively Gibson’s 
formula (32) and the exact first derivative formula (39) for the coefficient αGib.  
 
Gibson’s formula for covariance between exposures 
For all the calculations presented below, the covariance c is calculated using equation 
(7) which is valid for arbitrary spot exposures. Gibson also gives a closed formula for 
covariance between exposures when both spot values are zero, which we digress 
briefly to consider. In our notation, and in terms of covariance, Gibson’s formula10 
Page 6 is: 

 
π
ρ

ρ
π

ρ
2

11)sin
2
1

4
1(

2
1 −−

++= −c  (28) 

Gibson presents his formula as holding between averages over time ∫ dtEAT
1  and 

∫ dtEBT
1 , but seems to assume that AAA Xtt σ=)(V for a (single) random variable XA, 

and similarly for B. This assumption is not very realistic for the time development of 
value, which might more reasonably be assumed to follow Brownian motion. 
Nevertheless the equation above holds good as a one period equation, and all our 

                                                 
10 Michael Gibson, page 6. 
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results have in any case been in the one period case. In that case, in fact (28) is the 
sum of the tetrachoric series (6) when both exposures are zero.  

Note however that, under the more realistic assumption that the values VA and VB 
follow correlated Brownian motion, i.e.  

BABABA dtdV ,,, )( ωσ= ; dtdd BA ρωω =  
the formula for covariance between time averages is as follows11: 

 3

1422

16.3
sin)18(1)110(

16.9
32

12 πρ
ρρρρρ

π
ρ −++−−

+−=c  (29) 

Incidentally, when A = B and ρ = 1, this formula gives rise to variance of the time 
averaged exposure of 

 1.0
288

6451
≈

−
=

π
πc  (30) 

This formula appears at footnote 5 in ISDA’s 2001 response. 
 
Gibson’s formula for understatement (U) in terms of exposure covariance 
We turn to the calculation of understatement 1−= αU . In our notation, Gibson 
estimates the understatement U of risk arising from neglecting counterparty exposure 
correlation as 

 2><
≅

E
cU Gibα  (31) 

where<E> is the average EPE in the portfolio and c is the average covariance 
between exposures as defined earlier12. The coefficient is called α by Gibson, so to 
avoid confusion with ISDA’s α = 1 + U we refer to this coefficient as “Gibson’s α” 
denoted αGib. As mentioned, Gibson uses standard deviation scaling to estimate this 
coefficient and derives the result: 

 
))((
))((

2
1

2

2

Xq
Xq

Gib σ
α E

=  (32) 

Gibson remarks that we typically have 0 8.06. ≤≤ Gibα approximately, and this is 
borne out by the examples in Annex 3 when formula (32) is used. The exact formula 
for understatement of percentiles (see below) gives similar but somewhat higher 
values, which unlike equation (32) depend on the confidence level. 
 
We may alternatively write (32) as: 

 )11(
2
1

))((
))(())((

2
1

22

22

ωσ
µσα +=

+
=

Xq
XqXq

Gib  (33) 

where ω is the so-called default rate volatility (an explicit input into the CreditRisk+ 
model, or a function of asset correlation in the Vasicek model). Typical values of ω in 
the Vasicek model are 150% – 300% for investment grade assets, which correspond to 
values of αGib (calculated by this formula) in the range 0.55 – 0.72, consistent with 
Gibson’s suggested range of 0.6 – 0.8. 
 
The true value of αGib for small c 

                                                 
11 Tom Wilde, calculations communicated to the CRWG, March 2002. 
12 Michael Gibson, equation (1), page 5 or equation (A.29). Take care to note that (in our notation), we 
want <E>2, not <E2>  which appeared earlier. 
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Gibson’s derivation of the coefficient αGib is based on comparing standard deviations 
of the distributions of loss with and without covariance. Our value, based directly on 
the understatement of percentiles, depends on the confidence level, which equation 
(32) does not. The method we have already used for Eduardo’s calculation gives this 
value, as follows: 

By definition (referring to the direct assessment of percentile understatement): 

0
2

1

=><
=

c
Gib dc

dt
E

α  

where t is the percentile of the loss distribution at given confidence. This derivative is 
given exactly by the granularity adjustment (24). The exact value of the αGib 
coefficient is therefore given by taking N = ∞ in formula (27). In more detail, scaling 
(2) and (3) to a constant total notional of 1 unit, we have:  
 )()( xPEx >=<µ   (34) 
  (35) cxPNNPEPFx 22222 )()/11(/)()( −+><−><=σ
Letting N → ∞ gives . By (27) left hand formula,  cxPx 22 )()( =σ

 )()()( qbqq x
E
cxPEct β

><
+>=<  (36) 

Finally  

 
qxx

b c
xPE

x
t

ctU
=><

=−=
)(

)(1
)0(
)(

2
β  (37) 

This will be in the same form as Gibson’s formula A.29 (repeated at 31 above), if we 
put 

 
P

b
Gib

βα =  (38) 

in place of Gibson’s formula (Gibson A.25) for the coefficient. 

Using )
2
1( −= ab P ββ this becomes: 

 2
1)( −= qaGib xβα  (39) 

 
Note this is the exact value 

0
2 /)/1(

=
><=

cGib dcdtEα holding in the limit of small c, 
although it is not necessarily more valid that Gibson’s value when c is large since in 
that case the first order approximation will not be valid, while it is generally found 
that variances do give a reasonable guide to the percentiles of distributions in most 
cases. αGib computed this way lies in the range 0.8 – 1.3, above but by no means 
essentially different from values obtained using (32).  
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Attachment 1: Agreement between  α simulations (Annex 3) and analytic results 
The scenarios are as detailed in Eduardo’s notes. The right hand column shows 
Eduardo’s values for α and the red column labelled “α” shows results using the 
analysis presented here. Scenario 4 corresponding to the heterogenous portfolio is not 
performed. 
 

Asset 
ρ

CE+/- K = No 
factors G No of 

cpties PD Conf 
level

α Monte 
Carlo

Base case
22% 1.36 3 0 200 0.30% 99.9% 1.09

1. Sensitivity to pairwise correlation
0% 1.36 3 0 200 0.3% 99.9% 1.43

12% 1.36 3 0 200 0.3% 99.9% 1.21
24% 1.36 3 0 200 0.3% 99.9% 1.08
50% 1.36 3 0 200 0.3% 99.9% 1.02

2. Sensitivity to level of current exposures
22% 0 3 0 200 0.3% 99.9% 1.35
22% 1 3 0 200 0.3% 99.9% 1.14
22% 2 3 0 200 0.3% 99.9% 1.05
22% 3 3 0 200 0.3% 99.9% 1.03

3. Sensitivity to the number of market risk factors
22% 1.36 1 0 200 0.3% 99.9% 1.1
22% 1.36 5 0 200 0.3% 99.9% 1.08
22% 1.36 10 0 200 0.3% 99.9% 1.08
22% 1.36 50 0 200 0.3% 99.9% 1.08

4. Sensitivity to granularity of exposures (heterogenous portfolio)
22% 1.36 3 0.5 200 0.3% 99.9% 1.08
22% 1.36 3 1.0 200 0.3% 99.9% 1.21
22% 1.36 3 1.5 200 0.3% 99.9% 1.34
22% 1.36 3 2.0 200 0.3% 99.9% 1.21

5. Sensitivity to number of counterparties
22% 1.36 3 0 20 0.3% 99.9% 1.26
22% 1.36 3 0 50 0.3% 99.9% 1.22
22% 1.36 3 0 100 0.3% 99.9% 1.1
22% 1.36 3 0 500 0.3% 99.9% 1.04

6. Sensitivity to probability of default
22% 1.36 3 0 200 0.1% 99.9% 1.17
22% 1.36 3 0 200 0.5% 99.9% 1.07
22% 1.36 3 0 200 1.0% 99.9% 1.06
22% 1.36 3 0 200 5.0% 99.9% 1.05

7. Sensitivity to confidence level
22% 1.36 3 0 200 0.3% 99.0% 1.07
22% 1.36 3 0 200 0.3% 99.5% 1.10  

α

1.08

1.46
1.15
1.07
1.02

1.33
1.12
1.04
1.02

1.09
1.08
1.07
1.07

1.31
1.20
1.13
1.04

1.12
1.06
1.05
1.04

1.10
1.09

 
Note – see also Attachment 2 
Attachment 2 compares these results (which, on account of the general good 
agreement between simulation and analytic approximation should be regarded as one 
set of results, the “ISDA results”), with rather different results obtained for the case N 
= ∞ analysed by Michael Gibson. 
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Attachment 2. Results in the case N = ∞ (Michael Gibson’s case). 
The table shows the scenarios and results presented at Attachment 1, together with 
Michael Gibson’s corresponding results in the right hand columns. The key difference 
is that Gibson’s results are for N = ∞. Results presented are using Gibson’s 
approximate formula (32), and to the left, results using the exact derivative with 
respect to covariance from (39).  

Gibson’s method of approximating by variances gives results that are about 2/3 of the 
exact asymptotic values (0.6 vs 0.9 for the “Gibson α” coefficient). But the results for 
α are much smaller than the Canabarro α’s because of the omission of N as a driver, 
as discussed in the text.  

Asset 
ρ

CE+/-
K = No 
factor

s
G

No of 
cpties PD

Conf 
level

Comparison to 
monte carlo (see 

Annex 1)

Comparison with Gibson: α with 

Wilde Canabarro Wilde (GA) Gibson (Variance)
α α "Gibson α" α "Gibson α" α

Base case [See note] [See note]
22% 1.36 3 0 200 0.3% 99.9% 1.26 1.09 0.90 0.608

1. Sensitivity to pairwise correlation
0% 1.36 3 0 200 0.3% 99.9% 1.53 1.43 ∞ ∞

12% 1.36 3 0 200 0.3% 99.9% 1.37 1.21 1.32 0.78
24% 1.36 3 0 200 0.3% 99.9% 1.25 1.08 0.85 0.59
50% 1.36 3 0 200 0.3% 99.9% 1.12 1.02 0.42 0.52

2. Sensitivity to level of current exposures
22% 0 3 0 200 0.3% 99.9% 1.98 1.35 0.90 0.61
22% 1 3 0 200 0.3% 99.9% 1.41 1.14 0.90 0.61
22% 2 3 0 200 0.3% 99.9% 1.13 1.05 0.90 0.61
22% 3 3 0 200 0.3% 99.9% 1.06 1.03 0.90 0.61

3. Sensitivity to the number of market risk factors
22% 1.36 1 0 200 0.3% 99.9% 1.27 1.10 0.90 0.61
22% 1.36 5 0 200 0.3% 99.9% 1.26 1.08 0.90 0.61
22% 1.36 10 0 200 0.3% 99.9% 1.26 1.08 0.90 0.61
22% 1.36 50 0 200 0.3% 99.9% 1.26 1.08 0.90 0.61

4. Sensitivity to granularity of exposures (heterogenous portfolio)
22% 1.36 3 0.5 200 0.3% 99.9% 1.08
22% 1.36 3 1.0 200 0.3% 99.9% 1.21
22% 1.36 3 1.5 200 0.3% 99.9% 1.34
22% 1.36 3 2.0 200 0.3% 99.9% 1.21

5. Sensitivity to number of counterparties
22% 1.36 3 0 20 0.3% 99.9% 1.38 1.26
22% 1.36 3 0 50 0.3% 99.9% 1.33 1.22
22% 1.36 3 0 100 0.3% 99.9% 1.29 1.10
22% 1.36 3 0 500 0.3% 99.9% 1.24 1.04

6. Sensitivity to probability of default
22% 1.36 3 0 200 0.1% 99.9% 1.25 1.17 0.71 0.57
22% 1.36 3 0 200 0.5% 99.9% 1.28 1.07 1.03 0.63
22% 1.36 3 0 200 1.0% 99.9% 1.32 1.06 1.24 0.68
22% 1.36 3 0 200 5.0% 99.9% 1.55 1.05 2.20 0.88

7. Sensitivity to confidence level
22% 1.36 3 0 200 0.3% 99.0% 1.17 1.07 0.38 0.61
22% 1.36 3 0 200 0.3% 99.5% 1.20 1.10 0.53 0.61

N
ot

 p
er

fo
rm

ed

Not defined in N = ∞ case

All same as base case as N 
= ∞ here

Note: "Gibson α ". This is the coefficient defined by Gibson (definition above equation (34)) for which 
he uses the letter α .Gibson notes that this α typically lies in the range 0.6 - 0.8 (pA-4) which is 
borne out by the above. The quantity that we have called α is more or less the Gibson α times the 
average exposure correlation, and is equivalent to 1 + U where Gibson defines U at A.29.  

N = ∞ in all cases

1.0073 1.0049

∞ ∞
1.0106 1.0063
1.0069 1.0048
1.0034 1.0042

1.1508 1.1014
1.0259 1.0174
1.0004 1.0003
1.0000 1.0000

1.0218 1.0147
1.0044 1.0029
1.0022 1.0015
1.0004 1.0003

1.0057 1.0046
1.0083 1.0051
1.0100 1.0055
1.0177 1.0071

1.0031 1.0049
1.0043 1.0049
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Attachment 3: VBA code for the function α used for Attachment 1. 
Values of α shown in the table at Attachment 1 are obtained from the parameters 
using the following VBA function which implements the analysis in these notes. The 
input parameters are the columns of the table from left to right (except “G” which is 
not an input). 
 
----------------------------------------------------------- 
Function alpha(rho As Double, u As Double, K As Double, N As Double, p As 
Double, PC As Double) As Double 
 
Dim x, q, b1, b2 As Double 
 
x = Application.NormSInv(PC) 
q = Application.NormSDist((Application.NormSInv(p) + rho ^ 0.5 * x) / (1 - 
rho) ^ 0.5) 
 
b1 = -0.5 * (1 - q * (x * (1 - 2 * rho) - rho ^ 0.5 * Application.NormSInv(p)) / _ 
((rho * (1 - rho)) ^ 0.5 * Application.NormDist(((Application.NormSInv(p) + 
rho ^ 0.5 * x) / (1 - rho) ^ 0.5), 0, 1, 0))) 
b2 = (b1 - 0.5) * q 
 
Dim Epos As Double 
Dim Eneg As Double 
 
Epos = u * Application.NormSDist(u) + Application.NormDist(u, 0, 1, 0) 
Eneg = Epos - u 
 
Dim mu, VA1, VA2, VB1, VB2 As Double 
 
mu = N / 2 * (Epos + Eneg) 
 
VA1 = N / 2 * (Epos ^ 2 + Eneg ^ 2) 
VA2 = -N / 2 * (Epos ^ 2 + Eneg ^ 2) 
 
VB1 = N / 2 * (u ^ 2 + 1) 
VB2 = VA2 + N * (N - 1) * Application.NormDist(u, 0, 1, 0) ^ 2 / (2 * K) 
 
alpha = (mu * q + VB1 / mu * b1 + VB2 / mu * b2) / (mu * q + VA1 / mu * b1 
+ VA2 / mu * b2) 
 
End Function 
----------------------------------------------------------- 
 
 
 
 

 66



Attachment 4. Calculation of the granularity adjustment coefficients β1 and β2 
We are using the granularity adjustment formula for capital, equation (27)13 
 )()( %9.99%9.99%9.99 XXt βµ +=  (A1) 
where β is the “granularity adjustment” (24):  
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The Vasicek dependence of default probability is 
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where X is the standard normal factor. We have to evaluate β in this case and for a 
general  quadratic dependence 
 )()( XPx εµ =   
   22 )()()( XbPXaPx +=σ
The following workings are not original – see notes at end. We have 
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or 
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Seeing that , this is xdxxfd X −=/))((log
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Writing  we have a corresponding split22 )()()( XbPXaPx +=σ ba ba βββ +=  where 
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and  
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On rearrangement we get 
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On differentiating: 
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13 See for example, Gordy, “A risk factor model for ratings based capital rules”, Federal Reserve, 
October 2002, or Martin and  Wilde “Unsystematic Credit Risk”, RISK, November  2002. 
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Hence 
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We therefore obtain finally 
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and from 4.0; 
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These are incorporated directly into the VBA code in Attachment 2. 
 
The relation (A8) for βa is from Wilde, “Probing Granularity”, RISK, August 2001 
and (A13) for βb in Pyhtkin and Dev “Analytic Approach to Credit Risk Modelling”, 
RISK, March 2002. 
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